La distance d'un astre à la terre se mesure à l'aide de sa parallaxe quand celle-ci peut être déterminée. Supposons que l'observateur occupe successivement dans l'espace les positions A et B (fig. 27); la parallaxe d'une étoile e est l'angle AeB sous lequel serait vue de l'étoile la droite AB qui joint les deux stations. Cet angle AeB est la différence des angles eBX, eAX que forment les rayons visuels avec la direction ABX de la base. Si les stations A et B sont deux points de la surface terrestre, quelle que soit leur distance, il est impossible de trouver la moindre différence entre les angles eAX, eBX; leur différence AeB n'est pas appréciable avec nos instruments. Ne pouvant trouver aucune parallaxe en se déplaçant sur la terre, on a profité de ce que la terre change elle-même de position dans l'espace en tournant autour du soleil. Elle parcourt, dans ce mouvement, une orbite elliptique dont le grand axe a 76000000 lieues de longueur; un astronome peut donc, à six mois d'intervalle, observer les étoiles de deux stations. A et B, distantes l'une de l'autre de 76000000 lieues de 4 kilomètres.

On donne le nom de parallaxe annuelle d'une étoile à l'angle sous lequel serait vu de cette étoile le demi-grand axe de l'orbite elliptique que décrit la terre autour du soleil. Il est facile de voir que si la parallaxe annuelle atteignait pour une étoile la valeur de 1?, la distance de cette étoile à la terre ne serait pas moindre que 206265 fois 38000000 lieues, près de 8 millions de millions de lieues (783807000000) [20]. Or il n'existe pas d'étoiles ayant une parallaxe de cette grandeur; la plus petite des distances des étoiles à la terre est donc supérieure à 206265 fois 38000000 lieues. La lumière parcourant 77000 lieues par seconde, il suffit de diviser 783807000000 par 77000, pour avoir, en secondes, le minimum du temps que met à nous parvenir la lumière d'une étoile quelconque. C'est ce minimum que nous avons cité en commençant.

Note 20:[ (retour) ] L'angle e (fig. 27 bis), étant 1? ou une fraction de seconde, on peut, sans

erreur relativement sensible, regarder la ligne AB comme confondue avec le petit arc, au plus égal à 1?, dont elle est la corde, et qui, décrit de e comme centre avec le rayon eA = eB, mesure l'angle AeB. Or il y a dans la circonférence entière, circ eA = 2p·eA, 1296000 arcs de 1?, tels que AB; 1296000 AB = 2p·eA; d'où on déduit eA = 1296000/2p AB; or, 1296000/2p = 206265, à moins d'une unité: donc si la ligne AB = 38000000 lieues, et l'angle AeB = 1?, la distance eA = 206205 × 38000000 lieues.

Si la parallaxe AeB est seulement une fraction de seconde, 0?,35, par exemple, la distance eA sera plus grande. La circonférence qui contient 1296000?, contient 129600000 fois 0?,01, et 129600000/35 fois 0?,35; d'où l'égalité 129600000/35 AB = 2p·eA, de laquelle on déduirait eA.

M. Bessel est parvenu le premier à trouver une parallaxe annuelle pour la 61e du Cygne; cette parallaxe est de 0?,35. Connaissant cette parallaxe 0?,35, on en déduit, par des considérations géométriques très-simples (indiquées dans la note ci-dessous), la distance de cette étoile à la terre, qui est 589300 fois 38 millions de lieues.

On a calculé depuis les parallaxes annuelles des 7 autres étoiles indiquées dans notre tableau.

Voici par ordre les parallaxes des 8 étoiles désignées:

0?,91; 0?,33; 0?,26; 0?,15; 0?,133; 0?,127; 0?,106; 0?,046.

Ces parallaxes ont servi, comme celle de la 61e du Cygne, à calculer les distances consignées dans le tableau de la page 45.

NÉBULEUSES. VOIE LACTÉE.