On peut encore mêler une portion du même gaz avec du gaz oxygène; s'il y a vapeurs rouges & absorption, on en conclura qu'il contient du gaz nitreux.

Ces connoissances préliminaires donnent bien une idée de la qualité du gaz & de la nature du mêlange; mais elles ne suffisent pas pour déterminer les proportions & les quantités. Il faut alors avoir recours à toutes les ressources de l'analyse, & c'est beaucoup que de savoir à peu près dans quel sens il faut diriger ses efforts. Je suppose que l'on ait reconnu que le résidu sur lequel on opère soit un mêlange de gaz azote & de gaz oxygène: pour en reconnoître la proportion, on en fait passer une quantité déterminée, 100 parties par exemple, dans un tube gradué de 10 à 12 lignes de diamètre: on y introduit du sulfure de potasse dissous dans l'eau, & on laisse le gaz en contact avec cette liqueur; elle absorbe tout le gaz oxygène, & au bout de quelques jours il ne reste que du gaz azote.

Si au contraire on a reconnu qu'on avoit affaire à du gaz hydrogène, on en fait passer une quantité déterminée dans un eudiomètre de Volta; on y joint une première portion de gaz oxygène, qu'on fait détoner avec lui par l'étincelle électrique: on ajoute une seconde portion du même gaz oxygène, & on fait détoner de nouveau, & ainsi jusqu'à ce qu'on ait obtenu la plus grande diminution possible de volume. Il se forme, comme on sait, dans cette détonation, de l'eau qui est absorbée sur-le-champ; mais si le gaz hydrogène contenoit du carbone, il se forme en même tems de l'acide carbonique qui ne s'absorbe pas aussi promptement, & dont on peut reconnoître la quantité en facilitant son absorption par l'agitation de l'eau.

Enfin si on a du gaz nitreux, on peut encore en déterminer la quantité, du moins à peu près, par une addition de gaz oxygène, & d'après la diminution du volume qui en résulte.

Je m'en tiendrai à ces exemples généraux qui suffisent pour donner une idée de ce genre d'opérations. Un volume entier ne suffiroit pas, si l'on vouloit prévoir tous les cas. L'analyse des gaz est un art avec lequel il faut se familiariser; mais comme ils ont la plupart de l'affinité les uns avec les autres, il faut avouer qu'on n'est pas toujours sûr de les avoir complètement séparés. C'est alors qu'il faut changer de marche & de route, refaire d'autres expériences sous une autre forme, introduire quelque nouvel agent dans la combinaison, en écarter d'autres, jusqu'à ce qu'on soit sûr d'avoir saisi la vérité.

§. V.
Des corrections à faire au volume des Gaz obtenus dans les expériences, relativement à la pression de l'atmosphère.

C'est une vérité donnée par l'expérience, que les fluides élastiques en général sont compressibles en raison des poids dont ils sont chargés. Il est possible que cette loi souffre quelqu'altération aux approches du degré de compression qui seroit suffisant pour les réduire à l'état liquide, & de même à un degré de dilatation ou de compression extrême: mais nous ne sommes pas près de ces limites pour la plupart des gaz que nous soumettons à des expériences.

Quand je dis que les fluides élastiques sont compressibles en raison des poids dont ils sont chargés, voici comme il faut entendre cette proposition.

Tout le monde sait ce que c'est qu'un baromètre. C'est, à proprement parler, un siphon ABCD, pl. XII, fig. 16, plein de mercure dans la branche AB, plein d'air dans la branche BCD. Si l'on suppose mentalement cette branche BCD prolongée indéfiniment jusqu'au haut de notre atmosphère, on verra clairement que le baromètre n'est autre chose qu'une sorte de balance, un instrument dans lequel on met une colonne de mercure en équilibre avec une colonne d'air. Mais il est facile de s'appercevoir que, pour que cet effet ait lieu, il est parfaitement inutile de prolonger la branche BCD à une aussi grande hauteur, & que comme le baromètre est plongé dans l'air, la colonne AB de mercure sera également en équilibre avec une colonne de même diamètre d'air de l'atmosphère, quoique la branche du siphon BCD soit coupée en C & qu'on en retranche la partie CD.

La hauteur moyenne d'une colonne de mercure capable de faire équilibre avec le poids d'une colonne d'air prise depuis le haut de l'atmosphère jusqu'à la surface de la terre, est de 28 pouces de mercure, du moins à Paris & même dans les quartiers bas de la ville: ce qui signifie en d'autres termes que l'air à la surface de la terre à Paris, est communément pressé par un poids égal à celui d'une colonne de mercure de 28 pouces de hauteur. C'est ce que j'ai voulu exprimer dans cet Ouvrage, lorsque j'ai dit en parlant des différens gaz, par exemple du gaz oxygène, qu'il pesoit 1 once 4 gros le pied cube, sous une pression de 28 pouces. La hauteur de cette colonne de mercure diminue à mesure que l'on s'élève & qu'on s'éloigne de la surface de la terre, ou, pour parler plus rigoureusement, de la ligne de niveau formée par la surface de la mer; parce qu'il n'y a que la colonne d'air supérieure au baromètre qui fasse équilibre avec le mercure, & que la pression de toute la quantité d'air qui est au-dessous du niveau où il est placé, est nulle par rapport à lui.