M. de Luc a trouvé que l'air de l'atmosphère augmentoit de 1/215 de son volume par chaque degré du thermomètre à mercure divisé en 81 degrés de la glace à l'eau bouillante; ce qui donne pour un degré du thermomètre à mercure divisé en 80 parties, 1/211. Les expériences de M. Monge sembleroient annoncer que le gaz hydrogène est susceptible d'une dilatation un peu plus forte; il l'a trouvée de 1/180. A l'égard de la dilatation des autres gaz, nous n'avons pas encore d'expériences très-exactes; celles du moins qui existent n'ont pas été publiées. Il paroît cependant, à en juger par les tentatives que l'on connoît, que leur dilatabilité s'éloigne peu de celle de l'air commun. Je crois donc pouvoir supposer que l'air de l'atmosphère se dilate de 1/210 par chaque degré du thermomètre, & le gaz hydrogène de 1/190: mais comme il reste quelque incertitude sur ces déterminations, il faut, autant qu'il est possible, n'opérer qu'à une température peu éloignée de 10 degrés. Les erreurs qu'on peut alors commettre dans des corrections relatives au degré du thermomètre, ne sont d'aucune conséquence.
Le calcul à faire pour ces corrections est extrêmement facile; il consiste à diviser le volume de l'air obtenu par 210, & à multiplier le nombre trouvé par celui des degrés du thermomètre supérieur ou inférieur à 10 degrés. Cette correction est négative au-dessus de dix degrés, & additive au-dessous. Le résultat qu'on obtient est le volume réel de l'air à la température de 10 degrés.
On abrège & on facilite beaucoup tous ces calculs, en employant des tables de logarithmes.
§. VII.
Modèle de calcul pour les Corrections relatives au degré de pression & de température.
Maintenant que j'ai indiqué la manière de déterminer le volume des airs ou gaz & de faire à ce volume les corrections relatives à la pression & à la température, il me reste à donner un exemple pris dans un cas compliqué, afin de mieux faire sentir l'usage des tables qui se trouvent à la fin de cet Ouvrage.
Exemple.
On a renfermé dans une cloche A, pl. IV, fig. 3, une quantité d'air AEF, qui s'est trouvée occuper un volume de 353 pouces cubiques. Cet air étoit contenu par de l'eau, & la hauteur EL de la colonne d'eau dans l'intérieur de la cloche étoit de 4 pouces & demi au-dessus du niveau de celle de la cuve; enfin le baromètre étoit à 27 pouces 9 lignes & demie, & le thermomètre à 15 degrés.
On a brûlé dans cet air une substance quelconque, telle que du phosphore, dont le résultat est l'acide phosphorique qui, loin d'être dans l'état de gaz, est au contraire dans l'état concret. L'air restant après la combustion occupoit un volume de 295 pouces; la hauteur de l'eau dans l'intérieur de la cloche étoit de 7 pouces au-dessus de celle de la cuve, le baromètre à 27 pouces 9 lignes 1/4, & le thermomètre à 16 degrés.
Il est question, d'après ces données, de déterminer quel est le volume de l'air avant & après la combustion, & d'en conclure le volume de la partie qui a été absorbée.
Calcul avant la combustion.