CHAPITRE V.
Des moyens que la Chimie emploie pour écarter les unes des autres les molécules des corps sans les décomposer, & réciproquement pour les réunir.
J'ai déjà fait observer qu'il existoit deux manières de diviser les corps: la première qu'on nomme division méchanique, consiste à séparer une masse solide en un grand nombre d'autres masses beaucoup plus petites. On emploie pour remplir cet objet la force des hommes, celle des animaux, la pesanteur de l'eau appliquée aux machines hydrauliques, la force expansive de l'eau réduite en vapeurs, comme dans les machines à feu, l'impulsion du vent, &c. Mais toutes ces forces employées à diviser les corps, sont beaucoup plus bornées qu'on ne le croit communément. Avec un pilon d'un certain poids, qui tombe d'une certaine hauteur, on ne peut jamais réduire en poudre une matière donnée au-delà d'un certain degré de finesse, & la même molécule qui paroît si fine relativement à nos organes est encore une montagne, si on peut se servir de cette expression, lorsqu'on la compare avec les molécules constitutives & élémentaires du corps que l'on divise. C'est en cela que diffèrent les agens méchaniques des agens chimiques; ces derniers divisent un corps dans ses molécules primitives. Si, par exemple, c'est un sel neutre, ils portent la division de ses parties aussi loin qu'elle le peut être sans que la molécule cesse d'être une molécule de sel. Je vais donner dans ce chapitre des exemples de cette espèce de division. J'y joindrai quelques détails sur des opérations qui y sont relatives.
§. I.
De la Solution des Sels.
On a long-tems confondu en chimie la solution & la dissolution, & l'on désignoit par le même nom la division des parties d'un sel dans un fluide tel que l'eau, & la division d'un métal dans un acide. Quelques réflexions sur les effets de ces deux opérations feront sentir qu'il n'est pas possible de les confondre.
Dans la solution des sels, les molécules salines sont simplement écartées les unes des autres, mais ni le sel, ni l'eau n'éprouvent aucune décomposition, & on peut les retrouver l'un & l'autre en même quantité qu'avant l'opération. On peut dire la même chose de la dissolution des résines dans l'alkool & dans les dissolvans spiritueux. Dans la dissolution des métaux, au contraire, il y a toujours ou décomposition de l'acide, ou décomposition de l'eau: le métal s'oxygène, il passe à l'état d'oxide; une substance gazeuse se dégage; en sorte, qu'à proprement parler, aucune des substances après la dissolution n'est dans le même état où elle étoit auparavant. C'est uniquement de la solution dont il sera question dans cet article.
Pour bien saisir ce qui se passe dans la solution des sels, il faut savoir qu'il se complique deux effets dans la plupart de ces opérations: solution par l'eau, & solution par le calorique; & comme cette distinction donne l'explication de la plupart des phénomènes relatifs à la solution, je vais insister pour la bien faire entendre.
Le nitrate de potasse, vulgairement appelé salpêtre, contient très-peu d'eau de cristallisation; une foule d'expériences le prouvent; peut-être même n'en contient-il pas: cependant il se liquéfie à un degré de chaleur qui surpasse à peine celui de l'eau bouillante. Ce n'est donc point à l'aide de son eau de cristallisation qu'il se liquéfie, mais parce qu'il est très-fusible de sa nature; & qu'il passe de l'état solide à l'état liquide, un peu au-dessus de la chaleur de l'eau bouillante. Tous les sels sont de même susceptibles d'être liquéfiés par le calorique; mais à une température plus ou moins haute. Les uns, comme les acétites de potasse & de soude, se fondent & se liquéfient à une chaleur très-médiocre; les autres, au contraire, comme le sulfate de chaux, le sulfate de potasse, &c. exigent une des plus fortes chaleurs que nous puissions produire. Cette liquéfaction des sels par le calorique présente exactement les mêmes phénomènes que la liquéfaction de la glace. Premièrement elle s'opère de même à un degré de chaleur déterminé pour chaque sel, & ce degré est constant pendant tout le tems que dure la liquéfaction du sel. Secondement, il y a emploi de calorique au moment où le sel se fond, dégagement lorsqu'il se fige; tous phénomènes généraux, & qui ont lieu lors du passage d'un corps quelconque de l'état concret à l'état fluide & réciproquement.
Ces phénomènes de la solution par le calorique se compliquent toujours plus ou moins avec ceux de la solution par l'eau. On en sera convaincu si l'on considère qu'on ne peut verser de l'eau sur un sel pour le dissoudre, sans employer réellement un dissolvant mixte, l'eau & le calorique: or on peut distinguer plusieurs cas différens, suivant la nature & la manière d'être de chaque sel. Si par exemple un sel est très-peu soluble par l'eau, & qu'il le soit beaucoup par le calorique, il est clair que ce sel sera très-peu soluble à l'eau froide, & qu'il le sera beaucoup, au contraire, à l'eau chaude; tel est le nitrate de potasse, & sur-tout le muriate oxigéné de potasse. Si un autre sel au contraire est à la fois peu soluble dans l'eau, & peu soluble dans le calorique, il sera peu soluble dans l'eau froide comme dans l'eau chaude, & la différence ne sera pas très-considérable; c'est ce qui arrive au sulfate de chaux.
On voit donc qu'il y a une relation nécessaire entre ces trois choses; solubilité d'un sel dans l'eau froide, solubilité du même sel dans l'eau bouillante, degré auquel ce même sel se liquéfie par le calorique seul & sans le secours de l'eau; que la solubilité d'un sel à chaud & à froid est d'autant plus grande qu'il est plus soluble par le calorique, ou, ce qui revient au même, qu'il est susceptible de se liquéfier à un degré plus inférieur de l'échelle du thermomètre.