On se sert d'anneaux de fer AC, [pl. III], fig. 5, que l'on soude à une tige de fer AB, garnie d'un manche de bois D. On fait rougir l'anneau de fer dans un fourneau, puis on pose dessus le matras G, fig. 6, qu'on se propose de couper: lorsqu'on juge que le verre a été suffisamment échauffé par l'anneau de fer rouge, on jette quelques gouttes d'eau dessus, & le matras se casse ordinairement juste dans la ligne circulaire qui étoit en contact avec l'anneau de fer.
D'autres vaisseaux évaporatoires, d'un excellent usage, sont de petites fioles de verre, qu'on désigne dans le commerce sous le nom de fioles à médecine. Ces bouteilles qui sont de verre mince & commun, supportent le feu avec une merveilleuse facilité, & sont à très-bon marché. Il ne faut pas craindre que leur figure nuise à l'évaporation de la liqueur. J'ai déjà fait voir que toutes les fois qu'on évaporoit le liquide au degré de l'ébullition, la figure du vaisseau contribuoit ou nuisoit peu à la célérité de l'opération, sur-tout quand les parois supérieures du vaisseau étoient mauvais conducteurs de chaleur, comme le verre. On place une ou plusieurs de ces fioles sur une seconde grille de fer FG, [planche III], fig. 2, qu'on pose sur la partie supérieure d'un fourneau, & sous laquelle on entretient un feu doux. On peut suivre de cette manière un grand nombre d'expériences à la fois.
Un autre appareil évaporatoire assez commode & assez expéditif consiste dans une cornue de verre qu'on met au bain de sable, comme on le voit [planche III], fig. 1, & qu'on recouvre avec un dôme de terre cuite: mais l'opération est toujours beaucoup plus lente, quand on se sert du bain de sable; elle n'est pas d'ailleurs exempte de dangers, parce que le sable s'échauffant inégalement, tandis que le verre ne peut pas se prêter à des degrés de dilatation locale, le vaisseau est souvent exposé à casser. Il arrive même quelquefois que le sable chaud fait exactement l'office des anneaux de fer représentés [planche III], fig. 5 & 6, sur-tout lorsque le vase contient un fluide qui distille. Une goutte de fluide qui s'éclabousse & qui vient tomber sur les parois du vaisseau à l'endroit du contact de l'anneau de sable, le fait casser circulairement en deux parties terminées par une ligne bien tranchée.
Dans les cas où l'évaporation exige une grande intensité de feu, on se sert de creusets de terre; mais en général on entend le plus communément par le mot évaporation une opération qui se fait au degré de l'eau bouillante, ou très-peu au-dessus.
§. IV.
De la Cristallisation.
La cristallisation est une opération dans laquelle les parties intégrantes d'un corps séparées les unes des autres par l'interposition d'un fluide, sont déterminées par la force d'attraction qu'elles exercent les unes sur les autres, à se rejoindre pour former des masses solides.
Lorsque les molécules d'un corps sont simplement écartées par le calorique, & qu'en vertu de cet écartement ce corps est porté à l'état de liquide, il ne faut, pour le ramener à l'état de solide, c'est-à-dire pour opérer sa cristallisation, que supprimer une partie du calorique logé entre ses molécules, autrement dit le refroidir. Si le refroidissement est lent & si en même tems il y a repos, les molécules prennent un arrangement régulier, & alors il y a cristallisation proprement dite: si au contraire le refroidissement est rapide, ou si en supposant un refroidissement lent on agite le liquide au moment où il va passer à l'état concret, il y a cristallisation confuse.
Les mêmes phénomènes ont lieu dans les solutions par l'eau; ou pour mieux dire, les solutions par l'eau sont toujours mixtes, comme je l'ai déjà fait voir dans le paragraphe premier de ce chapitre: elles s'opèrent en partie par l'action de l'eau, en partie par celle du calorique. Tant qu'il y a suffisamment d'eau & de calorique pour écarter les molécules du sel, au point qu'elles soient hors de leur sphère d'attraction, le sel demeure dans l'état fluide. L'eau & le calorique viennent-ils à manquer, & l'attraction des molécules salines les unes par rapport aux autres devient-elle victorieuse, le sel reprend la forme concrète, & la figure des cristaux est d'autant plus régulière, que l'évaporation a été plus lente & faite dans un lieu plus tranquille.
Tous les phénomènes qui ont lieu dans la solution des sels se retrouvent également dans leur cristallisation, mais dans un sens inverse. Il y a dégagement de calorique au moment où le sel se réunit & reparoît sous sa forme concrète & solide, & il en résulte une nouvelle preuve que les sels sont tenus à la fois en dissolution par l'eau & par le calorique. C'est par cette raison qu'il ne suffit pas pour faire cristalliser les sels qui se liquéfient aisément par le calorique, de leur enlever l'eau qui les tenoit en dissolution; il faut encore leur enlever le calorique, & le sel ne cristallise qu'autant que ces deux conditions sont remplies. Le salpêtre, le muriate oxygéné de potasse, l'alun, le sulfate de soude, &c. en fournissent des exemples. Il n'en est pas de même des sels qui exigent peu de calorique pour être tenus en dissolution, & qui par cela même sont à peu près également solubles dans l'eau chaude & dans l'eau froide; il suffit de leur enlever l'eau qui les tenoit en dissolution pour les faire cristalliser, & ils reparoissent sous forme concrète dans l'eau bouillante même, comme on l'observe relativement au sulfate de chaux, aux muriates de soude & de potasse, & à beaucoup d'autres.
C'est sur ces propriétés des sels & sur leur différence de solubilité à chaud & à froid, qu'est fondé le raffinage du salpêtre. Ce sel, tel qu'il est retiré par une première opération, & tel qu'il est livré par les salpêtriers, est composé de sels déliquescens qui ne sont pas susceptibles de cristalliser, tels que le nitrate & le muriate de chaux; de sels qui sont presqu'également solubles à chaud & à froid, tels que les muriates de potasse & de soude; enfin de salpêtre, qui est beaucoup plus soluble à chaud qu'à froid.