On prend un ballon A de cristal, [planche IV], fig. 5, à large ouverture, & dont la capacité soit de 30 pintes environ; on y mastique une platine de cuivre BC percée de quatre trous auxquels aboutissent quatre tuyaux. Le premier Hh est destiné à s'adapter par son extrêmité h à une pompe pneumatique par le moyen de laquelle on peut faire le vuide dans le ballon. Un second tuyau gg communique par son extrêmité MM avec un réservoir de gaz oxygène, & est destiné à l'amener dans le ballon. Un troisième dDd' communique par son extrêmité dNN avec un réservoir de gaz hydrogène: l'extrêmité d' de ce tuyau se termine par une ouverture très-petite & à travers laquelle une très-fine aiguille peut à peine passer. C'est par cette petite ouverture que doit sortir le gaz hydrogène contenu dans le réservoir; & pour qu'il ait une vîtesse suffisante, on doit lui faire éprouver une pression de un ou deux pouces d'eau. Enfin la platine BC est percée d'un quatrième trou, lequel est garni d'un tube de verre mastiqué, à travers lequel passe un fil de métal GL, à l'extrémité L duquel est adaptée une petite boule, afin de pouvoir tirer une étincelle électrique de L en d' pour allumer, comme on le verra bientôt, le gaz hydrogène. Le fil de métal GL est mobile dans le tube de verre afin de pouvoir éloigner la boule L de l'extrémité d' de l'ajutoir Dd'. Les trois tuyaux dDd', gg, Hh sont chacun garnis de leur robinet.

Pour que le gaz hydrogène & le gaz oxygène arrivent bien secs par les tuyaux respectifs qui doivent les amener au ballon A, & qu'ils soient dépouillés d'eau autant qu'ils le peuvent être, on les fait passer à travers des tubes MM, NN d'un pouce environ de diamètre qu'on remplit d'un sel très-déliquescent, c'est-à-dire, qui attire l'humidité de l'air avec beaucoup d'avidité, tels que l'acétite de potasse, le muriate ou le nitrate de chaux. Voyez quelle est la composition de ces sels dans la seconde partie de cet Ouvrage. Ces sels doivent être en poudre grossière afin qu'ils ne puissent pas faire masse, & que le gaz passe facilement à travers les interstices que laissent les morceaux.

On doit s'être prémuni d'avance d'une provision suffisante de gaz oxygène bien pur; & pour s'assurer qu'il ne contient point d'acide carbonique, on doit le laisser long-tems en contact avec de la potasse dissoute dans de l'eau, & qu'on a dépouillée de son acide carbonique par de la chaux: on donnera plus bas quelques détails sur les moyens d'obtenir cet alkali.

On prépare avec le même soin le double de gaz hydrogène. Le procédé le plus sûr pour l'obtenir exempt de mêlange, consiste à le tirer de la décomposition de l'eau par du fer bien ductile & bien pur.

Lorsque ces deux gaz sont ainsi préparés, on adapte la pompe pneumatique au tuyau Hh, & on fait le vuide dans le grand ballon A: on y introduit ensuite l'un ou l'autre des deux gaz, mais de préférence le gaz oxygène par le tuyau gg, puis on oblige par un certain degré de pression le gaz hydrogène à entrer dans le même ballon par le tuyau dDd', dont l'extrémité d' se termine en pointe. Enfin on allume ce gaz à l'aide d'une étincelle électrique. En fournissant ainsi de chacun des deux airs, on parvient à continuer très-long-tems la combustion. J'ai donné ailleurs la description des appareils que j'ai employés pour cette expérience, & j'ai expliqué comment on parvient à mesurer les quantités de gaz consommés avec une rigoureuse exactitude. Voyez la troisième partie de cet Ouvrage.

Effet.

A mesure que la combustion s'opère, il se dépose de l'eau sur les parois intérieures du ballon ou matras: la quantité de cette eau augmente peu à peu; elle se réunit en grosses goutes qui coulent & se rassemblent dans le fond du vase.

En pesant le matras avant & après l'opération, il est facile de connoître la quantité d'eau qui s'est ainsi rassemblée. On a donc dans cette expérience une double vérification; d'une part le poids des gaz employés, de l'autre celui de l'eau formée, & ces deux quantités doivent être égales. C'est par une expérience de ce genre que nous avons reconnu, M. Meusnier & moi, qu'il falloit 85 parties en poids d'oxygène, & 15 parties également en poids d'hydrogène, pour composer 100 parties d'eau. Cette expérience qui n'a point encore été publiée, a été faite en présence d'une Commission nombreuse de l'Académie; nous y avons apporté les attentions les plus scrupuleuses, & nous avons lieu de la croire exacte à un deux-centième près tout au plus.

Ainsi, soit qu'on opère par voie de décomposition ou de recomposition, on peut regarder comme constant & aussi bien prouvé qu'on puisse le faire en Chimie & en Physique, que l'eau n'est point une substance simple; qu'elle est composée de deux principes, l'oxygène & l'hydrogène, & que ces deux principes séparés l'un de l'autre, ont tellement d'affinité avec le calorique, qu'ils ne peuvent exister que sous forme de gaz, au degré de température & de pression dans lequel nous vivons.

Ce phénomène de la décomposition & de la recomposition de l'eau s'opère continuellement sous nos yeux, à la température de l'atmosphère & par l'effet des affinités composées. C'est à cette décomposition que sont dus, comme nous le verrons bientôt, au moins jusqu'à un certain point, les phénomènes de la fermentation spiritueuse, de la putréfaction, & même de la végétation. Il est bien extraordinaire qu'elle ait échappé jusqu'ici à l'œil attentif des Physiciens & des Chimistes, & on doit en conclure que dans les sciences comme dans la morale il est difficile de vaincre les préjugés dont on a été originairement imbu, & de suivre une autre route que celle dans laquelle on est accoutumé de marcher.