Pour se former une juste idée de l'objet de la science mathématique considérée dans son ensemble, on peut d'abord partir de la définition vague et insignifiante qu'on en donne ordinairement, à défaut de toute autre, en disant qu'elle est la science des grandeurs, ou, ce qui est plus positif, la science qui a pour but la mesure des grandeurs. Cet aperçu scolastique a, sans doute, singulièrement besoin d'acquérir plus de précision et plus de profondeur. Mais l'idée est juste au fond; elle est même suffisamment étendue, lorsqu'on la conçoit convenablement. Il importe d'ailleurs, en pareille matière, quand on le peut sans inconvénient, de s'appuyer sur des notions généralement admises. Voyons donc comment, en partant de cette grossière ébauche, on peut s'élever à une véritable définition de la mathématique, à une définition qui soit digne de correspondre à l'importance, à l'étendue et à la difficulté de la science.

La question de mesurer une grandeur ne présente par elle-même à l'esprit d'autre idée que celle de la simple comparaison immédiate de cette grandeur avec une autre grandeur semblable supposée connue, qu'on prend pour unité entre toutes celles de la même espèce. Ainsi, quand on se borne à définir les mathématiques comme ayant pour objet la mesure des grandeurs, on en donne une idée fort imparfaite, car il est même impossible de voir par là comment il y a lieu, sous ce rapport, à une science quelconque, et surtout à une science aussi vaste et aussi profonde qu'est réputée l'être avec raison la science mathématique. Au lieu d'un immense enchaînement de travaux rationnels très-prolongés, qui offrent à notre activité intellectuelle un aliment inépuisable, la science paraîtrait seulement consister, d'après un tel énoncé, dans une simple suite de procédés mécaniques, pour obtenir directement, à l'aide d'opérations analogues à la superposition des lignes, les rapports des quantités à mesurer à celles par lesquelles on veut les mesurer. Néanmoins, cette définition n'a point réellement d'autre défaut que de n'être pas suffisamment approfondie. Elle n'induit point en erreur sur le véritable but final des mathématiques; seulement elle présente comme direct un objet qui, presque toujours, est, au contraire, fort indirect, et par là, elle ne fait nullement concevoir la nature de la science.

Pour y parvenir, il faut d'abord considérer un fait général, très-facile à constater. C'est que la mesure directe d'une grandeur, par la superposition ou par quelque procédé semblable, est le plus souvent pour nous une opération tout-à-fait impossible: en sorte que si nous n'avions pas d'autre moyen pour déterminer les grandeurs que les comparaisons immédiates, nous serions obligés de renoncer à la connaissance de la plupart de celles qui nous intéressent.

On comprendra toute l'exactitude de cette observation générale, en se bornant à considérer spécialement le cas particulier qui présente évidemment le plus de facilité, celui de la mesure d'une ligne droite par une autre ligne droite. Cette comparaison, qui, de toutes celles que nous pouvons imaginer, est sans contredit la plus simple, ne peut néanmoins presque jamais être effectuée immédiatement. En réfléchissant à l'ensemble des conditions nécessaires pour qu'une ligne droite soit susceptible d'une mesure directe, on voit que le plus souvent elles ne peuvent point être remplies à la fois, relativement aux lignes que nous désirons connaître. La première et la plus grossière de ces conditions, celle de pouvoir parcourir la ligne d'un bout à l'autre, pour porter successivement l'unité dans toute son étendue, exclut évidemment déjà la très-majeure partie des distances qui nous intéressent le plus; d'abord toutes les distances entre les différens corps célestes, ou de la terre à quelqu'autre corps céleste, et ensuite même la plupart des distances terrestres, qui sont si fréquemment inaccessibles. Quand cette première condition se trouve accomplie, il faut encore que la longueur ne soit ni trop grande ni trop petite, ce qui rendrait la mesure directe également impossible; il faut qu'elle soit convenablement située, etc. La plus légère circonstance, qui abstraitement ne paraîtrait devoir introduire aucune nouvelle difficulté, suffira souvent, dans la réalité, pour nous interdire toute mesure directe. Ainsi, par exemple, telle ligne que nous pourrions mesurer exactement avec la plus grande facilité, si elle était horizontale, il suffira de la concevoir redressée verticalement, pour que la mesure en devienne impossible. En un mot, la mesure immédiate d'une ligne droite, présente une telle complication de difficultés, surtout quand on veut y apporter quelque exactitude, que presque jamais nous ne rencontrons d'autres lignes susceptibles d'être mesurées directement avec précision, du moins parmi celles d'une certaine grandeur, que des lignes purement artificielles, créées expressément par nous pour comporter une détermination directe, et auxquelles nous parvenons à rattacher toutes les autres.

Ce que je viens d'établir relativement aux lignes se conçoit, à bien plus forte raison, des surfaces, des volumes, des vitesses, des temps, des forces, etc., et, en général, de toutes les autres grandeurs susceptibles d'appréciation exacte, et qui, par leur nature, présentent nécessairement beaucoup plus d'obstacles encore à une mesure immédiate. Il est donc inutile de s'y arrêter, et nous devons regarder comme suffisamment constatée l'impossibilité de déterminer, en les mesurant directement, la plupart des grandeurs que nous désirons connaître. C'est ce fait général qui nécessite la formation de la science mathématique, comme nous allons le voir. Car, renonçant, dans presque tous les cas, à la mesure immédiate des grandeurs, l'esprit humain a dû chercher à les déterminer indirectement, et c'est ainsi qu'il a été conduit à la création des mathématiques.

La méthode générale qu'on emploie constamment, la seule évidemment qu'on puisse concevoir, pour connaître des grandeurs qui ne comportent point une mesure directe, consiste à les rattacher à d'autres qui soient susceptibles d'être déterminées immédiatement, et d'après lesquelles on parvient à découvrir les premières, au moyen des relations qui existent entre les unes et les autres. Tel est l'objet précis de la science mathématique envisagée dans son ensemble. Pour s'en faire une idée suffisamment étendue, il faut considérer que cette détermination indirecte des grandeurs peut-être indirecte à des degrés fort différens. Dans un grand nombre de cas, qui souvent sont les plus importans, les grandeurs, à la détermination desquelles on ramène la recherche des grandeurs principales qu'on veut connaître, ne peuvent point elles-mêmes être mesurées immédiatement, et doivent par conséquent, à leur tour, devenir le sujet d'une question semblable, et ainsi de suite; en sorte que, dans beaucoup d'occasions, l'esprit humain est obligé d'établir une longue suite d'intermédiaires entre le système des grandeurs inconnues qui sont l'objet définitif de ses recherches, et le système des grandeurs susceptibles de mesure directe, d'après lesquelles on détermine finalement les premières, et qui ne paraissent d'abord avoir avec celles-ci aucune liaison.

Quelques exemples vont suffire pour éclaircir ce que les généralités précédentes pourraient présenter de trop abstrait.

Considérons, en premier lieu, un phénomène naturel très-simple qui puisse néanmoins donner lieu à une question mathématique réelle et susceptible d'applications effectives, le phénomène de la chute verticale des corps pesans.

En observant ce phénomène, l'esprit le plus étranger aux conceptions mathématiques reconnaît sur-le-champ que les deux quantités qu'il présente, savoir: la hauteur d'où un corps est tombé, et le temps de sa chute, sont nécessairement liées l'une à l'autre, puisqu'elles varient ensemble, et restent fixes simultanément; ou, suivant le langage des géomètres, qu'elles sont fonction l'une de l'autre. Le phénomène, considéré sous ce point de vue, donne donc lieu à une question mathématique, qui consiste à suppléer à la mesure directe de l'une de ces deux grandeurs lorsqu'elle sera impossible, par la mesure de l'autre. C'est ainsi, par exemple, qu'on pourra déterminer indirectement la profondeur d'un précipice, en se bornant à mesurer le temps qu'un corps emploierait à tomber jusqu'au fond; et, en procédant convenablement, cette profondeur inaccessible sera connue avec tout autant de précision que si c'était une ligne horizontale placée dans les circonstances les plus favorables à une mesure facile et exacte. Dans d'autres occasions, c'est la hauteur d'où le corps est tombé qui sera facile à connaître, tandis que le temps de la chute ne pourrait point être observé directement; alors le même phénomène donnera lieu à la question inverse, déterminer le temps d'après la hauteur; comme, par exemple, si l'on voulait connaître quelle serait la durée de la chute verticale d'un corps tombant de la lune sur la terre.

Dans l'exemple précédent, la question mathématique est fort simple, du moins quand on n'a pas égard à la variation d'intensité de la pesanteur, ni à la résistance du fluide que le corps traverse dans sa chute. Mais, pour agrandir la question, il suffira de considérer le même phénomène dans sa plus grande généralité, en supposant la chute oblique, et tenant compte de toutes les circonstances principales. Alors, au lieu d'offrir simplement deux quantités variables liées entr'elles par une relation facile à suivre, le phénomène en présentera un plus grand nombre, l'espace parcouru, soit dans le sens vertical, soit dans le sens horizontal, le temps employé à le parcourir, la vitesse du corps à chaque point de sa course, et même l'intensité et la direction de son impulsion primitive, qui pourront aussi être envisagées comme variables, et enfin, dans certains cas, pour tenir compte de tout, la résistance du milieu et l'énergie de la gravité. Toutes ces diverses quantités seront liées entr'elles, de telle sorte que chacune à son tour pourra être déterminée indirectement d'après les autres, ce qui présentera autant de recherches mathématiques distinctes qu'il y aura de grandeurs coexistantes dans le phénomène considéré. Ce changement très-simple dans les conditions physiques d'un problème pourra faire, comme il arrive en effet pour l'exemple cité, qu'une recherche mathématique, primitivement fort élémentaire, se place tout-à-coup au rang des questions les plus difficiles, dont la solution complète et rigoureuse surpasse jusqu'à présent toutes les plus grandes forces de l'esprit humain.