Toute question peut sans doute, ainsi que nous venons de le voir, être conçue comme réductible à une pure question de nombres. Mais la difficulté de la traiter réellement sous ce point de vue, c'est-à-dire d'effectuer une telle transformation, est d'autant plus grande, dans les diverses parties essentielles de la philosophie naturelle, que l'on considère des phénomènes plus compliqués, en sorte que sauf pour les phénomènes les plus simples et les plus généraux, elle devient bientôt insurmontable.
On le sentira aisément, si l'on considère que, pour faire rentrer une question dans le domaine de l'analyse mathématique, il faut d'abord être parvenu à découvrir des relations précises entre les quantités coexistantes dans le phénomène étudié, l'établissement de ces équations des phénomènes étant le point de départ nécessaire de tous les travaux analytiques. Or, cela doit être évidemment d'autant plus difficile, qu'il s'agit de phénomènes plus particuliers, et par suite plus compliqués. En examinant sous ce point de vue les diverses catégories fondamentales des phénomènes naturels établis dans la leçon précédente, on trouvera que, tout bien considéré, c'est seulement au plus pour les trois premières, comprenant toute la physique inorganique, qu'on peut légitimement espérer d'atteindre un jour ce haut degré de perfection scientifique, autant du moins qu'une telle limite peut être posée avec précision. Comme je dois plus tard traiter spécialement cette discussion par rapport à chaque science fondamentale, il suffira de l'indiquer ici de la manière la plus générale.
La première condition pour que des phénomènes comportent des lois mathématiques susceptibles d'être découvertes, c'est évidemment que les diverses quantités qu'ils présentent puissent donner lieu à des nombres fixes. Or, en comparant, à cet égard, les deux grandes sections principales de la philosophie naturelle, on voit que la physique organique tout entière, et probablement aussi les parties les plus compliquées de la physique inorganique, sont nécessairement inaccessibles, par leur nature, à notre analyse mathématique, en vertu de l'extrême variabilité numérique des phénomènes correspondans. Toute idée précise de nombres fixes est véritablement déplacée dans les phénomènes des corps vivans, quand on veut l'employer autrement que comme moyen de soulager l'attention, et qu'on attache quelque importance aux relations exactes des valeurs assignées. Sous ce rapport, les réflexions de Bichat, sur l'abus de l'esprit mathématique en physiologie, sont parfaitement justes; on sait à quelles aberrations a conduit cette manière vicieuse de considérer les corps vivans.
Les différentes propriétés des corps bruts, surtout les plus générales, se présentent dans chacun d'eux avec des degrés presque invariables, ou du moins elles n'éprouvent que des variations simples, séparées par de longs intervalles d'uniformité, et qu'il est possible, en conséquence, d'assujétir à des lois précises et régulières. Ainsi, les qualités physiques d'un corps inorganique, principalement quand il est solide, sa forme, sa consistance, sa pesanteur spécifique, son élasticité, etc., présentent, pour un temps considérable, une fixité numérique remarquable, qui permet de les considérer réellement et utilement sous un point de vue mathématique. On sait qu'il n'en est déjà plus ainsi à beaucoup près pour les phénomènes chimiques que présentent les mêmes corps, et qui, plus compliqués, dépendant d'un bien plus grand nombre de circonstances, présentent des variations plus étendues, plus fréquentes, et par suite plus irrégulières. Aussi, d'après quelques considérations déjà indiquées dans la première leçon (page 45) et qui seront spécialement développées dans le troisième volume de ce cours, on ne peut pas seulement assurer aujourd'hui, d'une manière générale, qu'il y ait lieu à concevoir des nombres fixes en chimie, même sous le rapport le plus simple, quant aux proportions relatives des corps dans leurs combinaisons, ce qui montre clairement combien un tel ordre de phénomènes est encore loin de comporter de véritables lois mathématiques. Admettons-en néanmoins, pour ce cas, la possibilité et même la probabilité futures, afin de ne pas rendre trop minutieuse la discussion de la limite générale qu'il s'agit d'établir ici par rapport à l'extension, effectivement possible, du domaine réel de l'analyse mathématique. Il n'y aura plus le moindre doute aussitôt que nous passerons aux phénomènes que présentent les corps, considérés dans cet état d'agitation intestine continuelle de leurs molécules, qui constitue essentiellement ce que nous nommons la vie, envisagée de la manière la plus générale, dans l'ensemble des êtres qui nous la manifestent. En effet, un caractère éminemment propre aux phénomènes physiologiques, et que leur étude plus exacte rend maintenant plus sensible de jour en jour, c'est l'extrême instabilité numérique qu'ils présentent, sous quelque aspect qu'on les examine, et que nous verrons plus tard, quand l'ordre naturel des matières nous y conduira, être une conséquence nécessaire de la définition même des corps vivans. Quant à présent, il suffit de noter cette observation incontestable, vérifiée par tous les faits, que chaque propriété quelconque d'un corps organisé, soit géométrique, soit mécanique, soit chimique, soit vitale, est assujétie, dans sa quantité, à d'immenses variations numériques tout-à-fait irrégulières, qui se succèdent aux intervalles les plus rapprochés sous l'influence d'une foule de circonstances, tant extérieures qu'intérieures, variables elles-mêmes; en sorte que toute idée de nombres fixes, et, par suite, de lois mathématiques que nous puissions espérer d'obtenir, implique réellement contradiction avec la nature spéciale de cette classe de phénomènes. Ainsi, quand on veut évaluer avec précision, même uniquement les qualités les plus simples d'un être vivant, par exemple sa densité moyenne, ou celle de l'une de ses principales parties constituantes, sa température, la vitesse de sa circulation intérieure, la proportion des élémens immédiats qui composent ses solides ou ses fluides, la quantité d'oxigène qu'il consomme en un temps donné, la masse de ses absorptions ou de ses exhalations continuelles, etc., et, à plus forte raison, l'énergie de ses forces musculaires, l'intensité de ses impressions, etc., il ne faut pas seulement, ce qui est évident, faire, pour chacun de ces résultats, autant d'observations qu'il y a d'espèces ou de races et de variétés dans chaque espèce; on doit encore mesurer le changement très-considérable qu'éprouve cette quantité en passant d'un individu à un autre, et, quant au même individu, suivant son âge, son état de santé ou de maladie, sa disposition intérieure, les circonstances de tout genre incessamment mobiles sous l'influence desquelles il se trouve placé, telles que la constitution atmosphérique, etc. Que peuvent donc signifier ces prétendues évaluations numériques si soigneusement enregistrées pour les divers phénomènes physiologiques ou même pathologiques, et déduites, dans le cas le plus favorable, d'une seule mesure réelle, lorsqu'il en faudrait une multitude? Elles ne peuvent qu'induire en erreur sur la vraie marche des phénomènes, et ne doivent être appliquées rationnellement que comme un moyen, pour ainsi dire mnémonique, de fixer les idées. Dans tous les cas, il y a évidemment impossibilité totale d'obtenir jamais de véritables lois mathématiques. Il en est encore plus fortement de même pour les phénomènes sociaux, qui offrent une complication encore supérieure, et, par suite, une variabilité plus grande, comme nous l'établirons spécialement dans le quatrième volume de ce cours.
Ce n'est pas néanmoins qu'on doive cesser, d'après cela, de concevoir, en thèse philosophique générale, les phénomènes de tous les ordres comme nécessairement soumis par eux-mêmes à des lois mathématiques, que nous sommes seulement condamnés à ignorer toujours dans la plupart des cas, à cause de la trop grande complication des phénomènes. Il n'y a en effet aucune raison de penser que, sous ce rapport, les phénomènes les plus complexes des corps vivans soient essentiellement d'une autre nature spéciale que les phénomènes les plus simples des corps bruts. Car, s'il était possible d'isoler rigoureusement chacune des causes simples qui concourent à produire un même phénomène physiologique, tout porte à croire qu'elle se montrerait douée, dans des circonstances déterminées, d'un genre d'influence et d'une quantité d'action aussi exactement fixes que nous le voyons dans la gravitation universelle, véritable type des lois fondamentales de la nature. Ce qui engendre la variabilité irrégulière des effets, c'est le grand nombre d'agens divers déterminant à la fois un même phénomène, et d'où il résulte que, dans les phénomènes très-compliqués, il n'y a peut-être pas deux cas rigoureusement semblables. Nous n'avons pas besoin, pour trouver une telle difficulté, d'aller jusqu'aux phénomènes des corps vivans. Elle se présente déjà dans ceux des corps bruts, quand nous considérons les cas les plus complexes; par exemple, en étudiant les phénomènes météorologiques. On ne peut douter que chacun des nombreux agens qui concourent à la production de ces phénomènes ne soit soumis séparément à des lois mathématiques, quoique nous ignorions encore la plupart d'entr'elles; mais leur multiplicité rend les effets observés aussi irrégulièrement variables que si chaque cause n'était assujétie à aucune condition précise.
La considération précédente conduit à apercevoir un second motif distinct en vertu duquel il nous est nécessairement interdit, vu la faiblesse de notre intelligence, de faire rentrer l'étude des phénomènes les plus compliqués dans le domaine des applications de l'analyse mathématique. En effet, indépendamment de ce que, dans les phénomènes les plus spéciaux, les résultats effectifs sont tellement variables que nous ne pouvons pas même y saisir des valeurs fixes, il suit de la complication des cas, que, quand même nous pourrions connaître un jour la loi mathématique à laquelle est soumis chaque agent pris à part, la combinaison d'un aussi grand nombre de conditions rendrait le problème mathématique correspondant tellement supérieur à nos faibles moyens, que la question resterait le plus souvent insoluble. Ce n'est donc pas ainsi qu'on peut faire une étude réelle et féconde de la majeure partie des phénomènes naturels.
Pour apprécier aussi exactement que possible cette difficulté, considérons à quel point se compliquent les questions mathématiques, même relativement aux phénomènes les plus simples des corps bruts, quand on veut rapprocher suffisamment l'état abstrait de l'état concret, en ayant égard à toutes les conditions principales qui peuvent exercer sur l'effet produit, une influence véritable. On sait, par exemple, que le phénomène très-simple de l'écoulement d'un fluide, en vertu de sa seule pesanteur, par un orifice donné, n'a pas jusqu'à présent de solution mathématique complète, quand on veut tenir compte de toutes les circonstances essentielles. Il en est encore ainsi, même pour le mouvement encore plus simple d'un projectile solide dans un milieu résistant.
Pourquoi l'analyse mathématique a-t-elle pu s'adapter, avec un succès si admirable, à l'étude approfondie des phénomènes célestes? Parce qu'ils sont, malgré les apparences vulgaires, beaucoup plus simples que tous les autres. Le problème le plus compliqué qu'ils présentent, celui de la modification que produit, dans le mouvement de deux corps tendant l'un vers l'autre en vertu de leur gravitation, l'influence d'un troisième corps agissant sur tous deux de la même manière, est bien moins composé que le problème terrestre le plus simple. Et, néanmoins, il offre déjà une telle difficulté, que nous n'en possédons encore que des solutions approximatives. Il est même aisé de voir, en examinant ce sujet plus profondément, que la haute perfection à laquelle a pu s'élever l'astronomie solaire par l'emploi de la science mathématique est encore essentiellement due à ce que nous avons profité avec adresse de toutes les facilités particulières, et, pour ainsi dire, accidentelles, qu'offrait pour la solution des problèmes la constitution spéciale, très-favorable sous ce rapport, de notre système planétaire. En effet, les planètes dont il se compose sont assez peu nombreuses, mais surtout elles sont, en général, de masses fort inégales et bien moindres que celle du soleil, et de plus fort éloignées les unes des autres; elles ont des formes presque sphériques; leurs orbites sont presque circulaires, et présentent de faibles inclinaisons mutuelles, etc. Il résulte de cet ensemble de circonstances que les perturbations sont le plus souvent peu considérables, et que pour les calculer il suffit ordinairement de tenir compte, concurremment avec l'action du soleil sur chaque planète en particulier, de l'influence d'une seule autre planète, susceptible, par sa grosseur et sa proximité, de déterminer des dérangemens sensibles. Mais si, au lieu d'un tel état de choses, notre système solaire eût été composé d'un plus grand nombre de planètes concentrées dans un moindre espace, et à peu près égales en masse; si leurs orbites avaient offert des inclinaisons fort différentes, et des excentricités considérables; si ces corps eussent été d'une forme plus compliquée, par exemple, des ellipsoïdes très-excentriques, etc.; il est certain qu'en supposant la même loi réelle de gravitation, nous ne serions pas encore parvenus à soumettre l'étude des phénomènes célestes à notre analyse mathématique, et probablement nous n'eussions pas même pu démêler jusqu'à présent la loi principale.
Ces conditions hypothétiques se trouveraient précisément réalisées au plus haut degré dans les phénomènes chimiques, si on voulait les calculer d'après la théorie de la gravitation générale.
En pesant convenablement les diverses considérations qui précèdent, on sera convaincu, je crois, qu'en réduisant aux diverses parties de la physique inorganique l'extension future des grandes applications réellement possibles de l'analyse mathématique, j'ai bien plutôt exagéré que rétréci l'étendue de son domaine effectif. Autant il importait de rendre sensible la rigoureuse universalité logique de la science mathématique, autant je devais signaler les conditions qui limitent pour nous son extension réelle, afin de ne pas contribuer à écarter l'esprit humain de la véritable direction scientifique dans l'étude des phénomènes les plus compliqués, par la recherche chimérique d'une perfection impossible.