Enfin, pour achever de signaler le vaste ensemble de recherches analytiques dont se compose le calcul intégral proprement dit, il me reste à mentionner une théorie fort importante dans toutes les applications de l'analyse transcendante, que j'ai dû laisser en dehors du système comme n'étant pas réellement destinée à une véritable intégration, et se proposant au contraire de remplacer la connaissance des intégrales vraiment analytiques, qui sont le plus souvent ignorées. On voit qu'il s'agit de la détermination des intégrales définies.
L'expression, toujours possible, des intégrales en séries indéfinies, peut d'abord être envisagée comme un heureux moyen général de compenser souvent l'extrême imperfection du calcul intégral. Mais l'emploi de telles séries, à cause de leur complication et de la difficulté de découvrir la loi de leurs termes, est ordinairement d'une médiocre utilité sous le rapport algébrique, bien qu'on en ait déduit quelquefois des relations fort essentielles. C'est surtout sous le rapport arithmétique que ce procédé acquiert une grande importance, comme moyen de calculer ce qu'on appelle les intégrales définies, c'est-à-dire, les valeurs des fonctions cherchées pour certaines valeurs déterminées des variables correspondantes.
Une recherche de cette nature correspond exactement, dans l'analyse transcendante, à la résolution numérique des équations dans l'analyse ordinaire. Ne pouvant obtenir le plus souvent la véritable intégrale, celle qu'on nomme par opposition, l'intégrale générale ou indéfinie, c'est-à-dire, la fonction qui, différentiée, a produit la formule différentielle proposée, les analystes ont dû s'attacher à déterminer, du moins, sans connaître une telle fonction, les valeur numériques particulières qu'elle prendrait en assignant aux variables des valeurs désignées. C'est évidemment résoudre la question arithmétique, sans avoir préalablement résolu la question algébrique correspondante, qui, le plus souvent, est précisément la plus importante. Une telle analyse est donc par sa nature, aussi imparfaite que nous avons vu l'être la résolution numérique des équations. Elle présente, comme celle-ci, une confusion vicieuse du point de vue arithmétique avec le point de vue algébrique; d'où résultent, soit sous le rapport purement logique, soit relativement aux applications, des inconvéniens analogues. Je puis donc me dispenser de reproduire ici les considérations indiquées dans la cinquième leçon au sujet de l'algèbre. On conçoit néanmoins que, dans l'impossibilité où nous sommes presque toujours de connaître les véritables intégrales, il est de la plus haute importance d'avoir pu obtenir au moins cette solution incomplète et nécessairement insuffisante. Or, c'est à quoi on est heureusement parvenu aujourd'hui pour tous les cas, l'évaluation des intégrales définies ayant été ramenée à des méthodes entièrement générales, qui ne laissent à désirer, dans un grand nombre d'occasions, qu'une moindre complication des calculs, but vers lequel se dirigent aujourd'hui toutes les transformations spéciales des analystes. Regardant maintenant comme parfaite cette sorte d'arithmétique transcendante, la difficulté, dans les applications, se réduit essentiellement à ne faire dépendre finalement la recherche proposée que d'une simple détermination d'intégrales définies, ce qui, évidemment, ne saurait être toujours possible, quelque habileté analytique qu'on puisse employer à effectuer une transformation aussi forcée.
Par l'ensemble des considérations indiquées dans cette leçon, on voit que, si le calcul différentiel constitue, de sa nature, un système limité et parfait auquel il ne reste plus à ajouter rien d'essentiel, le calcul intégral proprement dit, ou le simple traité de l'intégration, présente nécessairement un champ inépuisable à l'activité de l'esprit humain, indépendamment des applications indéfinies dont l'analyse transcendante est évidemment susceptible. Les motifs généraux par lesquels j'ai tâché de faire sentir, dans la cinquième leçon, l'impossibilité de découvrir jamais la résolution algébrique des équations d'un degré et d'une forme quelconques, ont sans aucun doute, infiniment plus de force encore relativement à la recherche d'un procédé unique d'intégration, invariablement applicable à tous les cas. C'est, dit Lagrange, un de ces problèmes dont on ne saurait espérer de solution générale. Plus on méditera sur ce sujet, plus on sera convaincu, je ne crains pas de l'affirmer, qu'une telle recherche est totalement chimérique, comme étant beaucoup trop supérieure à la faible portée de notre intelligence, bien que les travaux des géomètres doivent certainement augmenter dans la suite l'ensemble de nos connaissances acquises sur l'intégration, et créer aussi des procédés d'une plus grande généralité. L'analyse transcendante est encore trop près de sa naissance, il y a surtout trop peu de temps qu'elle est conçue d'une manière vraiment rationelle, pour que nous puissions nous faire une juste idée de ce qu'elle pourra devenir un jour. Mais, quelles que doivent être nos légitimes espérances, n'oublions pas de considérer avant tout les limites imposées par notre constitution intellectuelle, et qui, pour n'être pas susceptibles d'une détermination précise, n'en ont pas moins une réalité incontestable.
Au lieu de tendre à imprimer au calcul des fonctions indirectes, tel que nous le concevons aujourd'hui, une perfection chimérique, je suis porté à penser que lorsque les géomètres auront épuisé les applications les plus importantes de notre analyse transcendante actuelle, ils se créeront plutôt de nouvelles ressources, en changeant le mode de dérivation des quantités auxiliaires introduites pour faciliter l'établissement des équations, et dont la formation pourrait suivre une infinité d'autres lois que la relation très-simple qui a été choisie, d'après une conception que j'ai déjà indiquée dans la quatrième leçon. Les moyens de cette nature me paraissent susceptibles, en eux-mêmes, d'une plus grande fécondité que ceux qui consisteraient seulement à pousser plus loin notre calcul actuel des fonctions indirectes. C'est une pensée que je soumets aux géomètres dont les méditations se sont tournées vers la philosophie générale de l'analyse.
Du reste, quoique j'aie dû, dans l'exposition sommaire qui était l'objet propre de cette leçon, rendre sensible l'état d'extrême imperfection où se trouve encore le calcul intégral, on aurait une fausse idée des ressources générales de l'analyse transcendante, si on accordait à cette considération une trop grande importance. Il en est ici, en effet, comme dans l'analyse ordinaire, où l'on est parvenu à utiliser, à un degré immense, un très-petit nombre de connaissances fondamentales sur la résolution des équations. Quelque peu avancés qu'ils soient réellement jusqu'ici dans la science des intégrations, les géomètres n'en ont pas moins tiré, de notions abstraites aussi peu multipliées, la solution d'une multitude de questions de première importance en géométrie, en mécanique, en thermologie, etc. L'explication philosophique de ce double fait général résulte de l'importance et de la portée nécessairement prépondérantes des connaissances abstraites, dont la moindre se trouve naturellement correspondre à une foule de recherches concrètes, l'homme n'ayant d'autre ressource pour l'extension successive de ses moyens intellectuels, que dans la considération d'idées de plus en plus abstraites et néanmoins positives.
Pour achever de faire connaître, dans toute son étendue, le caractère philosophique de l'analyse transcendante, il me reste à considérer une dernière conception par laquelle l'immortel Lagrange, que nous retrouvons sur toutes les grandes voies de la science mathématique, a rendu cette analyse encore plus propre à faciliter l'établissement des équations dans les problèmes les plus difficiles, en considérant une classe d'équations encore plus indirectes que les équations différentielles proprement dites. C'est le calcul ou plutôt la méthode des variations, dont l'appréciation générale sera l'objet de la leçon suivante.