Elle l'est, en effet, par rapport à celle des lignes courbes, et de tous les autres objets que la géométrie considère. Mais il est évident que l'estimation d'une ligne droite ne peut être envisagée comme directe qu'autant qu'on peut immédiatement porter sur elle l'unité linéaire. Or, c'est ce qui présente le plus souvent des difficultés insurmontables, comme j'ai eu occasion de l'exposer spécialement pour un autre motif dans la troisième leçon. On doit alors faire dépendre la mesure de la droite proposée d'autres mesures analogues, susceptibles d'être immédiatement effectuées. Il y a donc nécessairement une première étude géométrique distincte, exclusivement consacrée à la ligne droite; elle a pour objet de déterminer les lignes droites, les unes par les autres, d'après les relations propres aux figures quelconques résultant de leur assemblage. Cette partie préliminaire de la géométrie, qui semble pour ainsi dire imperceptible quand on envisage l'ensemble de la science, est néanmoins susceptible d'un très-grand développement, lorsqu'on veut la traiter dans toute son étendue. Elle est évidemment d'autant plus importante, que, toutes les mesures géométriques devant se ramener, autant que possible, à celle des lignes droites, l'impossibilité de déterminer ces dernières suffirait pour rendre incomplète la solution de chaque question quelconque.

Telles sont donc, suivant leur enchaînement naturel, les diverses parties fondamentales de la géométrie rationnelle. On voit que, pour suivre dans son étude générale un ordre vraiment dogmatique, il faut considérer d'abord la géométrie des lignes, en commençant par la ligne droite, et passer ensuite à la géométrie des surfaces, pour traiter enfin celle des volumes. Il y a lieu de s'étonner, sans doute, qu'une classification méthodique qui dérive aussi simplement de la nature même de la science n'ait pas été constamment suivie.

Après avoir déterminé avec précision l'objet général et définitif des recherches géométriques, il faut maintenant considérer la science sous le rapport du champ embrassé par chacune de ses trois sections fondamentales.

Ainsi envisagée, la géométrie est évidemment susceptible, par sa nature, d'une extension rigoureusement indéfinie; car la mesure des lignes, des surfaces ou des volumes, présente nécessairement autant de questions distinctes que l'on peut concevoir de formes différentes, assujetties à des définitions exactes, et le nombre en est évidemment infini.

Les géomètres se sont bornés d'abord à considérer les formes les plus simples que la nature leur fournissait immédiatement, ou qui se déduisaient de ces élémens primitifs par les combinaisons les moins compliquées. Mais ils ont senti, depuis Descartes, que, pour constituer la science de la manière la plus philosophique, il fallait nécessairement la faire porter, en général, sur toutes les formes imaginables. Ils ont ainsi acquis la certitude raisonnée que cette géométrie abstraite comprendrait inévitablement, comme cas particuliers, toutes les diverses formes réelles que le monde extérieur pourrait présenter, de façon à n'être jamais pris au dépourvu. Si, au contraire, on s'était toujours réduit à la seule considération de ces formes naturelles, sans s'y être préparé par une étude générale et par l'examen spécial de certaines formes hypothétiques plus simples, il est clair que les difficultés auraient été le plus souvent insurmontables au moment de l'application effective. C'est donc un principe fondamental, dans la géométrie vraiment rationnelle, que la nécessité de considérer, autant que possible, toutes les formes qu'on peut concevoir rigoureusement.

L'examen le moins approfondi suffit pour faire comprendre que ces formes présentent une variété tout-à-fait infinie. Relativement aux lignes courbes, en les regardant comme engendrées par le mouvement d'un point assujetti à une certaine loi, il est clair qu'on aura, en général, autant de courbes différentes que l'on supposera de lois différentes pour ce mouvement, qui peut évidemment s'opérer suivant une infinité de conditions distinctes, quoiqu'il puisse arriver accidentellement quelquefois que de nouvelles générations produisent des courbes déjà obtenues. Ainsi, pour me borner aux seules courbes planes, si un point se meut de manière à rester constamment à la même distance d'un point fixe, il engendrera un cercle; si c'est la somme ou la différence de ses distances à deux points fixes qui demeure constante, la courbe décrite sera une ellipse ou une hyperbole; si c'est leur produit, on aura une courbe toute différente; si le point s'écarte toujours également d'un point fixe et d'une droite fixe, il décrira une parabole; s'il tourne sur un cercle en même temps que ce cercle roule sur une ligne droite, on aura une cycloïde; s'il s'avance le long d'une droite, tandis que cette droite, fixée par une de ses extrémités, tourne d'une manière quelconque, il en résultera ce qu'on appelle, en général, des spirales qui, à elles seules, présentent évidemment autant de courbes parfaitement distinctes, qu'on peut supposer de relations différentes entre ces deux mouvemens de translation et de rotation, etc., etc. Chacune de ces diverses courbes peut ensuite en fournir de nouvelles, par les différentes constructions générales que les géomètres ont imaginées, et qui donnent naissance aux développées, aux épicycloïdes, aux caustiques, etc., etc. Enfin il existe évidemment une variété encore plus grande parmi les courbes à double courbure.

Relativement aux surfaces, les formes en sont nécessairement bien plus diverses encore, en les regardant comme engendrées par le mouvement des lignes. En effet, la forme peut alors varier, non seulement en considérant, comme dans les courbes, les différentes lois en nombre infini auxquelles peut être assujetti le mouvement de la ligne génératrice, mais aussi en supposant que cette ligne elle-même vienne à changer de nature, ce qui n'a pas d'analogue dans les courbes, les points qui les décrivent ne pouvant avoir aucune figure distincte. Deux classes de conditions très-diverses peuvent donc faire varier les formes des surfaces, tandis qu'il n'en existe qu'une seule pour les lignes. Il est inutile de citer spécialement une série d'exemples propres à vérifier cette multiplicité doublement infinie qu'on remarque parmi les surfaces. Il suffirait, pour s'en faire une idée, de considérer l'extrême variété que présente le seul groupe des surfaces dites réglées, c'est-à-dire engendrées par une ligne droite, et qui comprend toute la famille des surfaces cylindriques, celle des surfaces coniques, la classe plus générale des surfaces développantes quelconques, etc. Par rapport aux volumes, il n'y a lieu à aucune considération spéciale, puisqu'ils ne se distinguent entr'eux que par les surfaces qui les terminent.

Afin de compléter cet aperçu géométrique, il faut ajouter que les surfaces elles-mêmes fournissent un nouveau moyen général de concevoir des courbes nouvelles, puisque toute courbe peut être envisagée comme produite par l'intersection de deux surfaces. C'est ainsi, en effet, qu'ont été obtenues les premières lignes qu'on puisse regarder comme vraiment inventées par les géomètres, puisque la nature donnait immédiatement la ligne droite et le cercle. On sait que l'ellipse, la parabole et l'hyperbole, les seules courbes complétement étudiées par les anciens, avaient été seulement conçues, dans l'origine, comme résultant de l'intersection d'un cône à base circulaire par un plan diversement situé. Il est évident que par l'emploi combiné de ces différens moyens généraux pour la formation des lignes et des surfaces, on pourrait produire une suite rigoureusement infinie de formes distinctes, en partant seulement d'un très-petit nombre de figures directement fournies par l'observation.

Du reste, tous les divers moyens immédiats pour l'invention des formes, n'ont presque plus aucune importance, depuis que la géométrie rationnelle a pris, entre les mains de Descartes, son caractère définitif. En effet, comme nous le verrons spécialement dans la douzième leçon, l'invention des formes se réduit aujourd'hui à l'invention des équations, en sorte que rien n'est plus aisé que de concevoir de nouvelles lignes et de nouvelles surfaces, en changeant à volonté les fonctions introduites dans les équations. Ce simple procédé abstrait est, sous ce rapport, infiniment plus fécond que les ressources géométriques directes, développées par l'imagination la plus puissante, qui s'appliquerait uniquement à cet ordre de conceptions. Il explique d'ailleurs, de la manière la plus générale et la plus sensible, la variété nécessairement infinie des formes géométriques, qui correspond ainsi à la diversité des fonctions analytiques. Enfin, il montre non moins clairement que les différentes formes de surfaces doivent être encore plus multipliées que celles des lignes, puisque les lignes sont représentées analytiquement par des équations à deux variables, tandis que les surfaces donnent lieu à des équations à trois variables, qui présentent nécessairement une plus grande diversité.

Les considérations précédemment indiquées suffisent pour montrer nettement l'extension rigoureusement infinie que comporte, par sa nature, chacune des trois sections générales de la géométrie, relativement aux lignes, aux surfaces et aux volumes, en résultat de la variété infinie des corps à mesurer.