Considérons, pour cela, que, tout système de coordonnées consistant à déterminer un point par l'intersection de deux lignes, le système propre à fournir les lieux géométriques les plus convenables doit être celui dans lequel ces deux lignes sont les plus simples possibles, ce qui restreint d'abord le choix à ne pouvoir porter que sur des systèmes rectilignes. À la vérité, il y a évidemment une infinité de systèmes qui méritent ce nom, c'est-à-dire qui n'emploient que des lignes droites pour déterminer les points, outre le système ordinaire qui assigne pour coordonnées les distances à deux droites fixes; tel serait, par exemple, celui dans lequel les coordonnées de chaque point se trouveraient être les deux angles que font les droites qui aboutissent de ce point à deux points fixes avec la droite de jonction de ces derniers; en sorte que cette première considération n'est pas rigoureusement suffisante pour expliquer la préférence accordée unanimement au système ordinaire. Mais, en examinant d'une manière plus approfondie la nature de tout système de coordonnées, nous avons reconnu, en outre, que chacune des deux lignes dont la rencontre détermine le point considéré, doit nécessairement offrir à chaque instant, parmi ses diverses conditions quelconques de détermination, une seule condition variable, qui donne lieu à l'ordonnée correspondante, et toutes les autres fixes, qui constituent les axes du système, en prenant ce terme dans son acception mathématique la plus étendue: la variation est indispensable pour que toutes les positions puissent être considérées, et la fixité ne l'est pas moins pour qu'il existe des moyens de comparaison. Ainsi, dans tous les systèmes rectilignes, chacune des deux droites sera assujétie à une condition fixe, et l'ordonnée résultera de la condition variable. Sous ce rapport, il est évident, en thèse générale, que le système le plus favorable à la construction des lieux géométriques, sera nécessairement celui d'après lequel la condition variable de chaque droite sera la plus simple possible, sauf à compliquer pour cela, s'il le faut, la condition fixe. Or, de toutes les manières possibles de déterminer deux droites mobiles, la plus aisée à suivre géométriquement est certainement celle dans laquelle, la direction de chaque droite restant invariable, elle ne fait que se rapprocher ou s'éloigner plus ou moins d'un axe constant. Il serait, par exemple, évidemment plus difficile de se figurer nettement le déplacement d'un point produit par l'intersection de deux droites, qui tourneraient chacune autour d'un point fixe en fesant avec un certain axe un angle plus ou moins grand, comme dans le système de coordonnées précédemment indiqué. Telle est la véritable explication générale de la propriété fondamentale que présente, par sa nature, le système rectiligne ordinaire, d'être plus apte qu'aucun autre à la représentation géométrique des équations, comme étant celui dans lequel il est le plus aisé de concevoir le déplacement d'un point en résultat du changement de valeur de ses coordonnées. Pour sentir nettement toute la force de cette considération, il suffirait, par exemple, de comparer soigneusement ce système avec le système polaire, dans lequel cette image géométrique si simple et si aisée à suivre, de deux droites se mouvant chacune parallèlement à l'axe correspondant, se trouve remplacée par le tableau compliqué d'une série infinie de cercles concentriques coupés par une droite assujétie à tourner autour d'un point fixe. Il est d'ailleurs facile de concevoir à priori quelle doit être, pour la géométrie analytique, l'extrême importance d'une propriété aussi profondément élémentaire, qui, par cette raison, doit se reproduire à chaque instant et prendre une valeur progressivement croissante dans tous les travaux quelconques de cette nature [22].
[Note 22: ][ (retour) ] Devant me borner ici à la comparaison la plus générale, je n'ai point considéré plusieurs autres inconvéniens élémentaires de moindre importance, mais cependant fort graves, que présente le système des coordonnées polaires, comme de ne point admettre d'interprétation géométrique pour le signe du rayon recteur, et même d'assigner quelquefois un point unique pour diverses solutions distinctes, d'où il résulte que la peinture des équations y est nécessairement imparfaite. Quels que soient ces inconvéniens, comme plusieurs systèmes autres que le système rectiligne ordinaire pourraient aussi en être exempts, il ne fallait point en tenir compte pour établir la supériorité générale de ce dernier.
En précisant davantage la considération qui démontre la supériorité du système de coordonnées ordinaire sur tout autre quant à la peinture des équations, on peut même se rendre compte de l'utilité que présente sous ce rapport l'usage habituel de prendre autant que possible les deux axes perpendiculaires entre eux plutôt qu'avec aucune autre inclinaison. Sous le rapport de la représentation des lignes par les équations, cette circonstance secondaire n'est pas plus universellement convenable que nous n'avons vu l'être la nature même du système; puisque, suivant les occasions, toute autre inclinaison des axes peut mériter à cet égard la préférence. Mais, sous le point de vue inverse, il est aisé de voir que des axes rectangulaires permettent constamment de peindre les équations d'une manière plus simple et même plus fidèle. Car, avec des axes obliques, l'espace se trouvant partagé par eux en régions dont l'identité n'est plus parfaite, il en résulte que, si le lieu géométrique de l'équation s'étend à la fois dans toutes ces régions, il y présentera, à raison de la seule inégalité des angles, des différences de figure qui, ne correspondant à aucune diversité analytique, altéreront nécessairement l'exactitude rigoureuse du tableau, en se mêlant aux résultats propres des comparaisons algébriques. Par exemple, une équation comme xm + ym = c, qui, par sa symétrie parfaite, devrait donner évidemment une courbe composée de quatre quarts identiques, sera représentée, au contraire, en prenant des axes non-rectangulaires, par un lieu géométrique dont les quatre parties seront inégales. On voit que le seul moyen d'éviter toute disconvenance de ce genre est de supposer droit l'angle des deux axes.
La discussion précédente établit clairement que, si, sous l'un des deux points de vue fondamentaux continuellement combinés en géométrie analytique, le système des coordonnées rectilignes proprement dit n'a aucune supériorité constante sur tout autre; comme il n'est pas non plus à cet égard constamment inférieur, sa plus grande aptitude nécessaire et absolue à la peinture des équations doit lui faire généralement accorder la préférence, quoiqu'il puisse évidemment arriver, dans quelques cas particuliers, que le besoin de simplifier les équations et de les obtenir plus aisément détermine les géomètres à adopter un système moins parfait. C'est, en effet, d'après le système rectiligne, que sont ordinairement construites les théories les plus essentielles de géométrie générale, destinées à exprimer analytiquement les phénomènes géométriques les plus importans. Quand on juge nécessaire d'en choisir un autre, c'est presque toujours le système polaire auquel on s'arrête, ce système étant d'une nature assez opposée à celle du système rectiligne pour que les équations trop compliquées relativement à celui-ci deviennent, en général, suffisamment simples par rapport à l'autre. Les coordonnées polaires ont d'ailleurs souvent l'avantage de comporter une signification concrète plus directe et plus naturelle, comme il arrive en mécanique pour les questions géométriques auxquelles donne lieu la théorie des mouvemens de rotation, et dans presque tous les cas de géométrie céleste.
Afin de simplifier l'exposition, nous n'avons jusqu'ici considéré la conception fondamentale de la géométrie analytique que relativement aux seules courbes planes, dont l'étude générale avait été l'objet unique de la grande rénovation philosophique opérée par Descartes. Il s'agit maintenant, pour compléter cette importante explication, de montrer sommairement de quelle manière cette pensée élémentaire a été étendue, environ un siècle après, par notre illustre Clairaut, à l'étude générale des surfaces et des courbes à double courbure. Les considérations indiquées ci-dessus me permettront de me borner à ce sujet à l'examen rapide de ce qui est strictement propre à ce nouveau cas.
L'entière détermination analytique d'un point dans l'espace exige évidemment qu'on assigne les valeurs de trois coordonnées; par exemple, d'après le système le plus fréquemment adopté et qui correspond au système rectiligne de la géométrie plane, des distances de ce point à trois plans fixes, ordinairement perpendiculaires entre eux, ce qui présente le point comme l'intersection de trois plans dont la direction est invariable. On pourrait également employer les distances du point mobile à trois points fixes, ce qui le déterminerait par la rencontre de trois sphères à centre constant. De même, la position d'un point serait définie en donnant sa distance plus ou moins grande à un point fixe, et la direction de cette distance, au moyen des deux angles que fait cette droite avec deux axes invariables; c'est le système polaire propre à la géométrie à trois dimensions; le point est alors construit par l'intersection d'une sphère à centre constant avec deux cônes droits à base circulaire dont les axes et le sommet commun ne changent pas. En un mot, il y a évidemment, dans ce cas, au moins la même variété infinie entre les divers systèmes possibles de coordonnées que nous avons déjà observée pour la géométrie à deux dimensions. En général, il faut concevoir un point comme toujours déterminé par l'intersection de trois surfaces quelconques, ainsi qu'il l'était auparavant par celle de deux lignes; chacune de ces trois surfaces a pareillement toutes ses conditions de détermination constantes, excepté une, qui donne lieu à la coordonnée correspondante, dont l'influence géométrique propre est ainsi d'astreindre le point à être situé sur cette surface.
Cela posé, il est clair que si les trois coordonnées d'un point sont entièrement indépendantes entre elles, ce point pourra prendre successivement dans l'espace toutes les positions possibles. Mais, si le point est assujéti à rester sur une certaine surface, définie d'une manière quelconque, alors deux coordonnées suffisent évidemment pour déterminer à chaque instant sa situation, puisque la surface proposée tiendra lieu de la condition imposée par la troisième coordonnée. On doit donc concevoir nécessairement dans ce cas, sous le point de vue analytique, cette dernière coordonnée comme une fonction déterminée des deux autres, celles-ci demeurant entre elles complétement indépendantes. Ainsi, il y aura entre les trois coordonnées variables une certaine équation permanente, et qui sera unique afin de correspondre au degré précis d'indétermination de la position du point. Cette équation, plus ou moins facile à découvrir, mais toujours possible, sera la définition analytique de la surface proposée, puisqu'elle devra se vérifier pour tous les points de cette surface, et seulement pour eux. Si la surface vient à éprouver un changement quelconque, même un simple déplacement, l'équation devra subir une modification correspondante plus ou moins profonde. En un mot, tous les phénomènes géométriques quelconques relatifs aux surfaces seront susceptibles d'être traduits par certaines conditions analytiques équivalentes propres aux équations à trois variables, et c'est dans l'établissement et l'interprétation de cette harmonie générale et nécessaire que consistera essentiellement la science de la géométrie analytique à trois dimensions.
Considérant ensuite cette conception fondamentale sous le point de vue inverse, on voit de la même manière que toute équation à trois variables peut être, en général, représentée géométriquement par une surface déterminée, primitivement définie d'après la propriété très-caractéristique, que les coordonnées de tous ses points conservent toujours entre elles la relation énoncée dans cette équation. Ce lieu géométrique changera évidemment, pour la même équation, suivant le système de coordonnées qui servira à la construction de ce tableau. En adoptant, par exemple, le système rectiligne, il est clair que dans l'équation entre les trois variables x, y, z, chaque valeur particulière attribuée à z, donnera une équation entre x et y, dont le lieu géométrique sera une certaine ligne située dans un plan parallèle au plan des x, y, et à une distance de ce dernier égale à la valeur de z, de telle sorte que le lieu géométrique total se présentera comme composé d'une suite infinie de lignes superposées dans une série de plans parallèles, sauf les interruptions qui pourront exister, et formera, par conséquent, une véritable surface. Il en serait de même en considérant tout autre système de coordonnées, quoique la construction géométrique de l'équation devînt plus difficile à suivre.
Telle est la conception élémentaire, complément de l'idée-mère de Descartes, sur laquelle est fondée la géométrie générale relativement aux surfaces. Il serait inutile de reprendre directement ici les autres considérations indiquées ci-dessus par rapport aux lignes, et que chacun peut aisément étendre aux surfaces, soit pour montrer que toute définition d'une surface par un mode quelconque de génération est réellement une équation directe de cette surface dans un certain système de coordonnées, soit pour déterminer entre tous les divers systèmes de coordonnées possibles quel est généralement le plus convenable. J'ajouterai seulement, sous ce dernier rapport, que la supériorité nécessaire du système rectiligne ordinaire, quant à la peinture des équations, est évidemment encore plus prononcée dans la géométrie analytique à trois dimensions que dans celle à deux, à cause de la complication géométrique incomparablement plus grande qui résulterait alors du choix de tout autre système, ainsi qu'on peut le vérifier de la manière la plus sensible en considérant, par opposition, le système polaire en particulier, qui est, pour les surfaces comme pour les courbes, et en vertu des mêmes motifs, le plus usité après le système rectiligne proprement dit.
Afin de compléter l'exposition générale de la conception fondamentale relative à l'étude analytique des surfaces, nous aurons encore à examiner philosophiquement, dans la quatorzième leçon, un dernier perfectionnement de la plus haute importance, que Monge a récemment introduit dans les élémens mêmes de cette théorie, pour la classification des surfaces en familles naturelles, établies d'après le mode de génération, et exprimées algébriquement par des équations différentielles communes, ou par des équations finies contenant des fonctions arbitraires.