Cela posé, la manière la plus simple et la plus directe de déterminer le cercle osculateur consiste à l'envisager, d'après la méthode infinitésimale proprement dite, comme passant par trois points infiniment voisins de la courbe proposée, ou, en d'autres termes, comme ayant avec elle deux élémens consécutifs communs, ce qui le distingue nettement de tous les cercles simplement tangens, avec lesquels la courbe n'a qu'un seul élément commun. Il résulte de cette notion, en ayant égard à la construction nécessaire pour décrire un cercle passant par trois points donnés, que le centre du cercle osculateur, ou ce qu'on appelle le centre de courbure de la courbe en chaque point, peut être regardé comme le point d'intersection de deux normales infiniment voisines, en sorte que la question se réduit à trouver ce dernier point. Or, cette recherche est facile, en formant, d'après l'équation générale de la tangente à une courbe quelconque, celle de la normale qui lui est perpendiculaire, et faisant ensuite varier d'une quantité infiniment petite, dans cette dernière équation, les coordonnées du point de contact, afin de passer à la normale infiniment voisine: la détermination de la solution commune à ces deux équations, qui sont du premier degré par rapport aux deux coordonnées du point d'intersection, suffit pour faire trouver les deux formules générales qui expriment les coordonnées du centre de courbure d'une courbe en un point quelconque. Ces formules une fois obtenues, la recherche du rayon de courbure n'offre plus aucune difficulté, puisqu'elle se réduit à calculer la distance de ce centre de courbure au point correspondant de la courbe. En appelant α, β, les coordonnées rectilignes du centre de courbure d'une courbe quelconque en un point dont les coordonnées sont x, y, et nommant r le rayon de courbe, on trouve par cette méthode les formules connues.
On conçoit de quelle importance est la détermination du rayon de courbure, et combien la discussion de la manière générale dont il varie aux différens points d'une courbe, doit contribuer à la connaissance approfondie de cette courbe. Cet élément a surtout ceci de très-remarquable, entre tous les autres sujets ordinaires de recherches dans la géométrie analytique, qu'il se rapporte directement, par sa nature, à la forme même de la courbe, sans dépendre aucunement de sa position. On voit que, sous le rapport analytique, il exige la considération simultanée des deux premières fonctions dérivées de l'ordonnée.
La théorie des centres de courbure conduit naturellement à l'importante notion des développées, qui sont maintenant définies comme étant les lieux géométriques de tous les centres de courbure de chaque courbe en ses différens points, quoique, au contraire, dans la conception primitive de cette branche de la géométrie, Huyghens eût déduit l'idée du cercle osculateur de celle de la développée, directement envisagée comme engendrant par son développement la courbe primitive, ou la développante. Il est aisé de reconnaître que ces deux manières de voir rentrent l'une dans l'autre. Cette développée présente évidemment, par quelque mode qu'on l'obtienne, deux propriétés générales et nécessaires relativement à la courbe quelconque, dont elle dérive: la première, d'avoir pour tangentes les normales à celle-ci; et la seconde, que la longueur de ses arcs soit égale à celle des rayons de courbure correspondans de la développante. Quant au moyen d'obtenir l'équation de la développée d'une courbe donnée, il est clair qu'entre les deux formules citées ci-dessus pour exprimer les coordonnées du centre de courbure, il suffit d'éliminer, dans chaque cas, les coordonnées x, y, du point correspondant de la courbe proposée, à l'aide de l'équation de cette courbe: l'équation en α, β qui résultera de l'élimination, sera celle de la développée demandée. On pourrait également entreprendre de résoudre la question inverse, c'est-à-dire de trouver la développante d'après la développée. Mais il faut remarquer qu'une élimination analogue à la précédente ne fournirait alors, pour la courbe cherchée, qu'une équation contenant, outre x et y, les deux fonctions dérivées dy/dx, d2y/dx2; en sorte qu'après cette analyse préparatoire, la solution complète du problème exigerait encore l'intégration de cette équation différentielle du second ordre ce qui, vu l'extrême imperfection du calcul intégral, serait le plus souvent impossible, si, par la nature propre d'une telle recherche, la courbe demandée ne devait point, comme j'ai eu occasion de l'indiquer dans la septième leçon, être représentée par la solution singulière, que la simple différentiation peut toujours faire obtenir, l'intégrale générale ne désignant ici que le système des cercles osculateurs, dont la connaissance n'est point l'objet de la question proposée. Il en serait de même toutes les fois qu'on aurait à déterminer une courbe d'après une propriété quelconque de son rayon de courbure. Cet ordre de questions est exactement analogue aux problèmes plus simples qui constituent ce que, dans l'origine de l'analyse transcendante, on appelait la Méthode inverse des tangentes, où l'on se proposait de déterminer une courbe par une propriété donnée de sa tangente en un point quelconque.
Par des considérations géométriques plus ou moins compliquées, analogues à celle qui fournit les développées, les géomètres ont déduit d'une même courbe primitive quelconque diverses autres courbes secondaires, dont les équations peuvent être obtenues d'après des procédés semblables. Les plus remarquables d'entre elles sont les caustiques par réflexion ou par réfraction, dont la première idée est due à Tschirnaüs, quoique Jacques Bernouilli en ait seul établi la véritable théorie générale. Ce sont, comme on sait, des courbes formées par l'intersection continuelle des rayons de lumière infiniment voisins qu'on supposerait réfléchis ou réfractés par la courbe primitive. En partant de la loi géométrique de la réflexion ou de la réfraction de la lumière, consistant en ce que l'angle de réflexion est égal à l'angle d'incidence, ou en ce que le sinus de l'angle de réfraction est un multiple constant et connu du sinus de l'angle d'incidence, il est évident que la recherche de ces caustiques se réduit à une pure question de géométrie, parfaitement semblable à celle des développées, conçues comme formées par l'intersection continuelle des normales infiniment voisines. Le problème se résoudra donc analytiquement en suivant une marche analogue, au sujet de laquelle toute autre indication serait ici superflue. Le calcul sera seulement plus laborieux, surtout si les rayons incidens ne sont pas supposés parallèles entre eux ou émanés d'un même point.
Les développées, les caustiques, et toutes les autres lignes déduites d'une même courbe principale à l'aide de constructions analogues, sont formées par les intersections continuelles de droites infiniment voisines soumises à une certaine loi. Mais on peut aussi, en généralisant le plus possible cette considération géométrique, concevoir des courbes produites par l'intersection continuelle de certaines courbes infiniment voisines, assujéties à une même loi quelconque. Cette loi consiste ordinairement en ce que toutes ces courbes sont représentées par une équation commune, d'ailleurs quelconque, d'où elles dérivent successivement en donnant diverses valeurs à une certaine constante arbitraire. On peut alors se proposer de trouver le lieu géométrique des points d'intersection de ces courbes consécutives, qui correspondent à des valeurs infiniment rapprochées de cette constante arbitraire conçue comme variant d'une manière continue. Leïbnitz a imaginé le premier les recherches de cette nature, qui ont ensuite été fort étendues par Clairaut et surtout par Lagrange. Pour traiter le cas le plus simple, celui que je viens de caractériser exactement, il suffit évidemment de différentier l'équation générale proposée par rapport à la constante arbitraire que l'on considère, et d'éliminer ensuite cette constante entre cette équation différentielle et l'équation primitive; on obtiendra ainsi, entre les deux coordonnées variables, une équation indépendante de cette constante, qui sera celle de la courbe cherchée, dont la forme différera souvent beaucoup de celle des courbes génératrices. Lagrange a établi, au sujet de cette relation géométrique, un important théorème général, en montrant que, sous le point de vue analytique, la courbe ainsi obtenue et les courbes génératrices ont nécessairement une même équation différentielle, dont l'intégrale complète représente le système des courbes génératrices, tandis que sa solution singulière correspond à la courbe des intersections.
J'ai considéré jusqu'ici la théorie de la courbure des courbes suivant l'esprit de la méthode infinitésimale proprement dite, qui s'adapte en effet bien plus simplement qu'aucune autre à toute recherche de ce genre. La conception de Lagrange, relativement à l'analyse transcendante, présentait surtout, par sa nature, de grandes difficultés spéciales pour la solution directe d'une telle question, comme je l'ai déjà remarqué dans la sixième leçon. Mais ces difficultés ont si heureusement excité le génie de Lagrange, qu'elles l'ont conduit à la formation de la théorie générale des contacts, dont l'ancienne théorie du cercle osculateur se trouve n'être plus qu'un cas particulier fort simple. Il importe au but de cet ouvrage de considérer maintenant cette belle conception, qui est peut-être, sous le rapport philosophique, l'objet le plus profondément intéressant que puisse offrir jusqu'ici la géométrie analytique.
Comparons une courbe quelconque donnée y=∫(x) à une autre courbe variable z=φ(x), et cherchons à nous former une idée précise des divers degrés d'intimité qui pourront exister entre ces deux courbes, en un point commun, suivant les relations qu'on supposera entre la fonction φ et la fonction f. Il suffira pour cela de considérer la distance verticale des deux courbes en un autre point de plus en plus rapproché du premier, afin de la rendre successivement la moindre possible, eu égard à la corrélation des deux fonctions. Si h désigne l'accroissement qu'éprouve l'abcisse en passant à ce nouveau point, cette distance, qui est égale à la différence des deux ordonnées correspondantes, pourra être développée, d'après la formule de Taylor, suivant les puissances ascendantes de h, et aura pour expression la série,
En concevant, ce qui est évidemment toujours possible, h tellement petit, que le premier terme de cette série soit supérieur à la somme de tous les autres, il est clair que la courbe z aura avec la courbe y un rapprochement d'autant plus intime, que la nature de la fonction variable φ permettra de supprimer un plus grand nombre de termes dans ce développement, à partir du premier. Le degré d'intimité des deux courbes sera donc exactement apprécié, sous le point de vue analytique, par le nombre plus ou moins grand de fonctions dérivées successives de leurs ordonnées qui auront la même valeur au point que l'on considère. De là, l'importante conception générale des divers ordres de contacts plus ou moins parfaits, dont la notion du cercle osculateur comparé aux cercles simplement tangens n'avait présenté jusqu'alors qu'un seul exemple particulier. Ainsi, après la simple intersection, le premier degré de rapprochement entre deux courbes a lieu quand les premières dérivées de leurs ordonnées sont égales; c'est le contact du premier ordre, ou ce qu'on appelle ordinairement le simple contact, parce qu'il a été long-temps le seul connu. Le contact du second ordre exige de plus que les secondes dérivées des fonctions ∫ et φ soient égales: en y joignant encore l'égalité de leurs troisièmes dérivées, on constitue un contact du troisième ordre, et ainsi de suite à l'infini. Au delà du premier ordre, les contacts portent souvent le nom d'osculations du premier ordre, du second ordre, etc.