Enfin, il faut encore mentionner, comme instrumens essentiels, les divers appareils micrométriques successivement imaginés pour mesurer avec précision les diamètres apparens des astres, et généralement tous les petits intervalles angulaires.
Quoique la théorie en soit extrêmement facile, depuis le simple micromètre réticulaire jusqu'au micromètre à double image, il est néanmoins remarquable qu'ils aient tous été inventés par des astronomes, sans que les constructeurs y aient eu aucune part essentielle, comme le montre, au reste, l'histoire de tous les instrumens de précision. Cela tient principalement, sans doute, à l'éducation si imparfaite de la plupart des constructeurs habiles, dont plusieurs ont évidemment témoigné par leurs productions un génie mécanique plus que suffisant pour inventer spontanément les instrumens qu'ils se bornaient à exécuter, s'ils eussent pu en mieux sentir l'importance et en comprendre plus clairement la destination.
Après avoir considéré le perfectionnement des mesures astronomiques, soit angulaires, soit horaires, relativement aux principaux moyens matériels qu'on y emploie, il faut maintenant envisager les moyens intellectuels qui sont au moins aussi nécessaires, c'est-à-dire la théorie des corrections indispensables que les astronomes doivent faire subir à toutes les indications de leurs instrumens pour les dégager des erreurs inévitables dues à diverses causes générales, et surtout aux réfractions et aux parallaxes.
Il existe, comme je l'ai indiqué ci-dessus, une harmonie fondamentale entre ces deux ordres de perfectionnemens. Car il faut des instrumens d'une certaine précision pour que la réfraction et la parallaxe deviennent suffisamment appréciables; et, d'un autre côté, il serait parfaitement inutile d'inventer des instrumens extrêmement exacts, si la réfraction ou la parallaxe devaient, à elles seules, apporter dans les observations une incertitude supérieure à celle qu'on se propose d'éviter par l'amélioration des appareils. Pourquoi, par exemple, les Grecs se seraient-ils efforcés de perfectionner beaucoup leurs instrumens, lorsque l'impossibilité où ils étaient de tenir compte des réfractions et des parallaxes introduisait nécessairement dans leurs mesures angulaires des erreurs habituelles de un à deux degrés, et quelquefois même davantage? C'est sans doute dans une telle corrélation qu'il faut chercher l'explication véritable de la grossièreté des instrumens grecs, qui forme un contraste si frappant avec la sagacité d'invention et la finesse d'exécution dont les anciens ont donné tant de preuves irrécusables dans d'autres genres de productions.
Ces corrections fondamentales peuvent être distinguées, d'après leurs causes, en deux classes. Les unes tiennent, d'une manière directe et évidente, à la position de l'observateur, et n'exigent aucune connaissance approfondie des phénomènes astronomiques: ce sont la réfraction et la parallaxe ordinaire proprement dite. Les autres, qui ont sans doute, au fond, la même origine, puisqu'elles proviennent des mouvemens de la planète sur laquelle l'observateur est situé, sont fondées, au contraire, sur le développement même des principales théories astronomiques: ce sont la parallaxe annuelle, la précession, l'aberration et la nutation. Nous devons nous borner, en ce moment, à envisager les premières, qui sont d'ailleurs habituellement les plus importantes, les autres étant plus convenablement examinées à mesure qu'il sera question des phénomènes compliqués dont elles dépendent.
Considérons, en premier lieu, la théorie générale des réfractions astronomiques.
La lumière qui nous vient d'un astre quelconque doit être, inévitablement, plus ou moins déviée par l'action de l'atmosphère terrestre, qu'elle est obligée de traverser dans toute son étendue avant d'agir sur nous. De là une source fondamentale d'erreur, dont toutes nos observations astronomiques ont besoin d'être soigneusement dégagées, avant de pouvoir servir à former aucune théorie précise. Conçue d'une manière générale, son influence consiste évidemment, d'après la loi de la réfraction, à rapprocher constamment l'astre du zénith, en le laissant toujours dans le même plan vertical; et cet effet, qui ne peut être rigoureusement nul qu'au zénith seul, devient graduellement de plus en plus considérable à mesure que l'astre descend vers l'horizon. La manifestation la plus simple de cette altération s'obtient en mesurant la hauteur du pôle, en un lieu quelconque, comme étant la moyenne entre les deux hauteurs méridiennes d'une même étoile circompolaire. Cette hauteur, qui naturellement devrait être exactement la même de quelque étoile qu'on se fût servi, éprouve au contraire des variations très sensibles suivant les diverses étoiles employées; et elle devient d'autant plus grande que l'étoile descend plus près de l'horizon, ce qui rend évidente l'influence de la réfraction.
Quoique l'altération qui provient d'une telle cause ne puisse porter immédiatement que sur les distances zénithales, il est clair que, par une suite nécessaire, elle doit affecter indirectement toutes les autres mesures astronomiques, à l'exception des azimuths, qui restent seuls inaltérables. Par cela même que l'astre se trouve élevé dans son plan vertical, sa distance au pôle, l'instant de son passage au méridien, l'heure de son lever et de son coucher, etc., éprouvent des modifications inévitables. Mais ces effets secondaires seraient évidemment très faciles à calculer avec exactitude par de simples formules trigonométriques, si l'effet principal était une fois bien connu. Toute la difficulté se réduit donc à découvrir la véritable loi suivant laquelle la réfraction diminue les diverses distances zénithales, et c'est en cela que consiste le grand problème des réfractions astronomiques, dont il s'agit maintenant d'apprécier la nature.
On en peut chercher la solution par deux voies opposées: l'une rationnelle, l'autre empirique, que les astronomes ont fini par combiner.
Si l'atmosphère terrestre pouvait être regardée comme homogène, la lumière n'y subirait qu'une seule réfraction à son entrée, et sa direction demeurant ensuite invariable, il serait aisé de calculer à priori la déviation, d'après la célèbre loi du rapport constant qui existe entre les sinus des angles que le rayon réfracté et le rayon incident font avec la normale à la surface réfringente: il resterait tout au plus à déterminer, par l'observation, un seul coefficient, si l'on ignorait la vraie valeur de ce rapport. Tel est le procédé très simple d'après lequel Dominique Cassini construisit la première table de réfractions un peu satisfaisante, lorsque Descartes et Snellius eurent découvert cette loi générale de la réfraction. Il avait heureusement, jusqu'à un certain point, compensé, à son insu, ce que l'hypothèse d'homogénéité avait de profondément défectueux, en supposant à l'atmosphère une hauteur totale beaucoup trop petite. Mais la diminution de la densité des différentes couches atmosphériques à mesure qu'on s'élève est trop considérable, et d'ailleurs trop intimement liée à la notion même d'atmosphère, pour qu'une telle solution puisse être envisagée comme vraiment rationnelle. Or, c'est là ce qui fait la difficulté, jusqu'ici insurmontable, de cette importante recherche. Car il résulte de cette constitution nécessaire de l'atmosphère, non pas une réfraction unique, mais une suite infinie de petites réfractions toutes inégales et croissantes à mesure que la lumière pénètre dans une couche plus dense, en sorte que sa roule, au lieu d'être simplement rectiligne, forme une courbe extrêmement compliquée, dont il faudrait connaître la nature pour calculer, par sa dernière tangente comparée à la première, la véritable déviation totale. La détermination de cette courbe deviendrait un problème purement géométrique, d'ailleurs plus ou moins difficile à résoudre, si la loi relative à la variation de la densité des couches atmosphériques pouvait être une fois exactement obtenue; ce qui, en réalité, doit être jugé impossible lorsqu'on veut tenir compte de toutes les causes essentielles.