VINGT-UNIÈME LEÇON.


Considérations générales sur les phénomènes géométriques élémentaires des corps célestes.

Les phénomènes géométriques qui peuvent être le sujet de nos recherches dans le système solaire dont nous faisons partie forment deux classes bien distinctes: les uns se rapportent à chaque astre envisagé comme immobile, et comprennent sa distance, sa figure, sa grandeur, l'atmosphère dont il est peut-être entouré, etc., en un mot tous les élémens essentiels qui le caractérisent directement; les autres sont relatifs à l'astre considéré dans ses déplacemens, et se réduisent à la comparaison mathématique des diverses positions qu'il occupe aux différentes époques de sa course périodique. Le premier ordre de phénomènes est, par sa nature, tout-à-fait indépendant du second, quoique, pour obtenir des déterminations plus exactes, on soit fréquemment obligé, comme nous allons le voir, de l'y rattacher. Il continuerait d'avoir lieu quand même le ciel ne nous offrirait plus d'autre spectacle que la rigoureuse invariabilité de son mouvement journalier: il serait, dans cette hypothèse idéale, le seul objet de nos études astronomiques. Au contraire, le second ordre de phénomènes dépend nécessairement du premier, au moins en ce qui concerne les positions. Enfin, l'étude des derniers phénomènes doit être, par sa nature, plus difficile et plus compliquée, en même temps qu'elle constitue seule le véritable but définitif de la géométrie céleste, la prévision exacte de l'état du ciel à une époque quelconque, à l'égard duquel la connaissance des premiers phénomènes n'est qu'un préliminaire indispensable. Cette division n'est donc point purement artificielle. On pourra l'exprimer commodément en employant les expressions de phénomènes statiques pour le premier ordre, et phénomènes dynamiques pour le second, à la condition toutefois de n'attacher ici à ces termes qu'un simple sens géométrique. Telle est la division rationnelle d'après laquelle je me propose d'examiner l'esprit de la géométrie céleste. Cette leçon sera essentiellement consacrée à la considération des phénomènes statiques, et je ne ferai qu'y ébaucher l'analyse des phénomènes dynamiques, dont l'examen, nécessairement, bien plus étendu, sera le sujet spécial des deux leçons suivantes conformément au tableau synoptique contenu dans le premier volume de cet ouvrage.

La détermination la plus fondamentale à l'égard des astres consiste dans l'évaluation de leurs distances à la terre, et, par suite, entre eux, qui est la première base nécessaire de toutes les spéculations mathématiques dont les corps célestes peuvent être l'objet, soit sous le point de vue géométrique, soit sous le point de vue mécanique. Cherchons à nous faire une juste idée générale des moyens par lesquels on a pu obtenir cette donnée capitale, relativement à tous les astres de notre monde.

Il ne saurait exister à cet égard d'autre procédé élémentaire que celui imaginé, dès l'origine de la géométrie, pour connaître, en général, les distances des corps inaccessibles. Une telle distance ne peut jamais être déterminée par la seule direction précise dans laquelle le corps est aperçu d'un point de vue unique, mais en comparant exactement la différence des directions qui correspondent à deux points de vue distincts avec l'écartement mutuel, préalablement bien connu, de ces deux points de vue. En termes plus géométriques, il est clair que la distance angulaire observée à chacune des deux stations, entre l'astre et l'autre station, conjointement avec l'intervalle linéaire de ces stations, permet de résoudre le triangle rectiligne formé par l'astre et les deux points de vue, ce qui fait connaître la distance cherchée. Telle est la méthode fondamentale qui semble, par sa nature, devoir être exactement applicable à quelque distance que ce soit.

Mais, en l'examinant avec plus d'attention, on reconnaît, au contraire, qu'elle est en réalité nécessairement limitée, dans les cas astronomiques, par l'imperfection plus ou moins inévitable des mesures angulaires, dont le degré actuel de précision a été fixé dans la leçon précédente. En effet, la résolution de ce triangle exige indispensablement la connaissance du troisième angle, celui dont le sommet est au point inaccessible proposé. Si donc, par l'immensité de la distance, ou par la petitesse de la base, cet angle se trouve être extrêmement petit, il sera fort mal connu, et, par suite, la distance sera très inexactement calculée. Cet inconvénient est d'autant plus possible, qu'un tel angle ne pouvant être, par sa nature, directement évalué, mais seulement conclu des deux autres, suivant la règle ordinaire, comme étant le supplément de leur somme, l'incertitude des observations y sera nécessairement doublée; en sorte que, dans l'état présent de nos mesures, on n'en pourra pas répondre ordinairement à moins de deux secondes près. Il suit de là que si l'angle est, en réalité, moindre que deux secondes, il ne saurait être nullement connu, et que, dans ce cas, on pourra seulement déterminer une limite inférieure de la distance cherchée, sans savoir, en aucune manière, si cette distance est effectivement beaucoup au-delà ou très rapprochée d'une telle limite.

Dans tous les cas terrestres, nous avons, il est vrai, la faculté d'échapper complètement à cet inconvénient radical, quelque grande que puisse être la distance proposée, en augmentant convenablement l'intervalle des deux stations. C'est pourquoi les longueurs terrestres sont susceptibles d'être mesurées avec beaucoup plus de précision que les distances célestes, l'angle à l'objet étant non-seulement toujours très sensible, mais pouvant même avoir constamment la grandeur que nous jugeons la plus favorable à l'exactitude du résultat. Il ne saurait en être ainsi pour les cas célestes, la nécessité qui nous renferme dans les limites de notre planète imposant des bornes fort étroites, et souvent, en effet, très insuffisantes, à l'agrandissement possible de nos bases. Telle est la difficulté fondamentale que présente la détermination des distances astronomiques, et qui restreint considérablement nos connaissances à cet égard, comme nous allons l'expliquer en examinant sous ce rapport les différens cas principaux.

Envisageons d'abord, pour bien fixer les idées, l'astre dont la distance peut être le plus exactement calculée, en mesurant sur la terre une très grande base. Quand on voulut déterminer avec toute la précision possible la parallaxe horizontale de la lune, vers le milieu du siècle dernier, Lacaille se transporta au cap de Bonne-Espérance et Lalande à Berlin, afin d'y observer la distance zénithale de cet astre en un même instant, bien convenu d'avance d'après un signal céleste quelconque, par exemple au milieu d'une éclipse exactement prévue. Les latitudes et les longitudes des deux stations, choisies, pour plus de facilité, sous deux méridiens très rapprochés, permettaient préalablement de connaître sans peine, du moins comparativement au rayon de la terre, la grandeur linéaire de la base, qui est à peu près la plus étendue que notre globe puisse effectivement nous offrir. Cela posé, l'observation directe des deux distances zénithales procurait immédiatement toutes les données nécessaires à la résolution du triangle rectiligne d'où résultait la distance cherchée. Une telle opération, dans laquelle l'angle à la lune était presque de deux degrés, devait faire connaître très exactement la distance de cet astre, qui, dans sa valeur moyenne, est d'environ soixante rayons terrestres, et sur laquelle on peut ainsi garantir que l'erreur n'excède point deux myriamètres.

Le même moyen pourrait être directement appliqué, quoique avec une précision bien moins grande, à quelques astres plus éloignés, surtout à Vénus et même à Mars, dans le moment où ces deux planètes sont à leur moindre distance de la terre. Mais il devient beaucoup trop incertain à l'égard du soleil, sur la distance duquel une semblable opération laisserait une incertitude d'au moins un huitième, ou d'environ deux millions de myriamètres. Enfin, il est tout-à-fait insuffisant envers les astres plus lointains de notre système.