Les distances des astres à la terre étant une fois bien connues, l'étude de leur figure et de leur grandeur ne peut plus présenter d'autre difficulté que celle d'une observation suffisamment précise, en réservant toutefois la question à l'égard de notre propre planète, qui sera ci-après spécialement considérée. Cette recherche est, en effet, par sa nature, du ressort de l'inspection immédiate. L'éloignement même où ces grands corps sont placés de nos yeux est une circonstance éminemment favorable qui nous permet d'embrasser d'un seul regard l'ensemble de leur forme, en même temps que leur mouvement ou le nôtre nous les fait voir successivement sous tous les aspects possibles. La distance, il est vrai, pourrait être tellement grande que les dimensions et, par suite, la forme nous devinssent totalement imperceptibles: tel est le cas de tous les astres extérieurs à notre monde, qui ne sont aperçus, dans les plus puissans télescopes, que comme des points mathématiques d'un très vif éclat, et dont la sphéricité ne nous est réellement indiquée que par une induction très forte. C'est aussi ce qui arrive jusqu'ici pour quelques corps secondaires de notre propre système, pour les satellites d'Uranus par exemple, et même, à un certain degré, pour les quatre petites planètes situées entre Mars et Jupiter. Mais tous les astres de quelque importance dans notre monde comportent, à cet égard, une exploration complète, du moins avec nos instrumens actuels. Il suffit donc de mesurer soigneusement, par les meilleurs moyens micrométriques, leurs diamètres apparens dans tous les sens possibles, pour juger immédiatement de leur véritable figure, après avoir toutefois effectué les deux corrections fondamentales de la réfraction et de la parallaxe. Si la figure de la terre a été long-temps mise en question, et si sa connaissance exacte a exigé les recherches les plus difficiles et les plus laborieuses, comme je l'indiquerai plus bas, il n'a jamais pu en être ainsi du soleil et de la lune, et successivement de tous les autres astres de notre système; à mesure que le perfectionnement de la vision artificielle a permis de les explorer assez distinctement. Un seul cas a dû présenter, à cet égard, une véritable difficulté scientifique. C'est celui des deux singuliers satellites annulaires dont Saturne est immédiatement entouré. L'étrangeté de leur figure a exigé que, pour la bien reconnaître, Huyghens, guidé par des apparences long-temps inexplicables, formât à ce sujet une heureuse hypothèse, qui a satisfait ensuite à toutes les observations. Il en a été ainsi, jusqu'à un certain point, dans l'origine de la science astronomique, à l'égard de la lune, par la diversité de ses aspects, quoique la plus simple géométrie permette ici de décider la question. À ces seules exceptions près, l'inspection immédiate a évidemment suffi pour reconnaître la sphéricité presque parfaite de tous nos astres [5], et pour s'apercevoir plus tard qu'ils sont tous légèrement aplatis dans le sens de leur axe de rotation et renflés dans leur équateur. La quantité de cet aplatissement a pu même être exactement mesurée avec des micromètres perfectionnés. Le résultat général de ces mesures a été de montrer, ce me semble, que les astres sont d'autant plus aplatis que leur rotation est plus rapide, depuis l'aplatissement presque imperceptible de la lune ou de Vénus, jusqu'à l'aplatissement d'environ 1/12 dans Jupiter ou dans Saturne; ce que nous verrons plus tard être conforme à la théorie de la gravitation.

[Note 5: ][ (retour) ] Il semble nécessaire d'en excepter les quatre petites planètes découvertes depuis le commencement de ce siècle, et dont la forme semble être beaucoup moins régulière, autant que leur faible étendue et leur grand éloignement permettent jusqu'ici d'en juger.

Quant à la véritable grandeur des corps célestes, un calcul très facile la déduit immédiatement de la mesure du diamètre apparent combinée avec la détermination de la distance. Car, la sécante du demi-diamètre apparent d'un corps sphérique est évidemment égale au rapport entre son rayon réel et sa distance à l'oeil; ce qui permet d'évaluer maintenant ce rayon, et, par suite, la surface et le volume. L'homme n'a eu si long-temps des idées profondément erronées des vraies dimensions des astres que parce que leurs distances réelles lui étaient inconnues; quoique, d'ailleurs, par son ignorance des lois de la vision, il n'ait pas toujours maintenu une exacte harmonie entre les fausses notions qu'il se formait des unes et des autres.

Le résultat général de ces diverses déterminations pour tous les astres de notre monde, comparé avec l'ordre fondamental de leurs distances au soleil, ne se montre assujetti jusqu'à présent à aucune règle. On y remarque seulement que le soleil est beaucoup plus volumineux que tous les autres corps de ce système, même réunis; et, en général, que les satellites sont aussi beaucoup moindres que leurs planètes, comme l'exige la mécanique céleste.

Il est presque superflu d'ajouter ici que notre ignorance à l'égard des distances effectives de tous les corps extérieurs à notre monde, nous interdit toute connaissance de leurs vraies dimensions, quand même nous parviendrions, à l'aide de plus puissans télescopes, à mesurer leurs diamètres apparens. Nous avons seulement lieu de penser vaguement que leur volume doit être analogue à celui de notre soleil.

Une question secondaire, mais qui n'est point sans intérêt, se rattache à l'étude de la figure et de la grandeur des astres, dont elle est, en quelque sorte, un complément minutieux. C'est l'évaluation exacte de la hauteur des petites aspérités qui recouvrent leur surface, à la façon de nos montagnes. Rien n'est plus propre peut-être qu'une telle estimation à rendre sensible la puissance de nos lunettes actuelles et la précision qu'ont acquis nos moyens micrométriques.

On conçoit, en général, que l'un quelconque des astres intérieurs à notre monde doit avoir un hémisphère éclairé par le soleil et un autre hémisphère visible de la terre; et que nous apercevons seulement la portion commune, plus ou moins étendue suivant les divers aspects, de ces deux hémisphères, dont chacun serait d'ailleurs nettement terminé par un cercle, si la surface était parfaitement polie. Cela posé, s'il existe, dans la partie invisible de l'hémisphère éclairé, ou dans la partie obscure de l'hémisphère visible, et tout près de la ligne de séparation, une montagne suffisamment élevée, son sommet nous apparaîtra nécessairement, dans l'image de l'astre, comme un point isolé extérieur au disque régulier, et dont la distance à ce disque, ainsi que la situation, exactement appréciées l'une et l'autre à l'aide d'un bon micromètre, nous permettront de déterminer, avec plus ou moins de précision, par un calcul trigonométrique fort simple, la hauteur cherchée, d'abord comparativement au rayon de l'astre, et finalement en mètres si nous le désirons. Le degré de précision que comporte une estimation aussi délicate dépend, évidemment, de l'étendue et de la netteté du disque; et l'absence d'atmosphère doit aussi contribuer à l'augmenter. Aucun astre, sous ces divers rapports, ne peut être plus exactement exploré, à cet égard, que la lune, dont les principales montagnes sont peut-être mieux mesurées aujourd'hui, d'après les opérations de M. Schroëter, qu'un grand nombre des montagnes terrestres. Il est remarquable qu'elles soient, en général, plus élevées que nos plus hautes montagnes, puisqu'on en trouve de huit mille mètres au moins, ce qui est surtout frappant par contraste avec un diamètre plus de trois fois moindre. La même singularité s'observe à l'égard de Vénus et de Mercure, seules planètes qui aient pu jusqu'ici permettre une semblable détermination, bien moins exacte toutefois que pour la lune; M. Schroëter a trouvé que leurs montagnes atteignent jusqu'à quatre myriamètres environ, dans la première, qui est à peu près égale en grandeur à la terre, et deux dans la seconde, dont le diamètre est presque trois fois moindre.

Une recherche plus importante, qui complète naturellement l'étude de la figure et de la grandeur des astres, consiste à évaluer l'étendue et l'intensité de leurs atmosphères. Elle est fondée sur la déviation appréciable que ces atmosphères doivent imprimer à la lumière des astres extérieurs à notre monde, devant lesquels vient se placer en ligne droite l'astre intérieur proposé; ce qui constitue ce genre particulier d'éclipses, connu sous le nom d'occultations d'étoiles, et qui est, comme tout autre, et même mieux qu'aucun autre, susceptible d'être exactement calculé. Cette déviation, qui est parfaitement semblable à la réfraction horizontale de notre atmosphère, peut être surtout estimée d'une manière extrêmement précise, par un procédé indirect, qui ne nous serait point applicable, d'après l'influence très sensible qu'elle exerce sur la durée totale de l'occultation. Par le simple mouvement diurne du ciel, cette durée serait naturellement indéfinie; mais elle est, en réalité, plus ou moins longue, suivant le mouvement propre plus ou moins lent de l'astre proposé. On peut la calculer d'avance avec exactitude, d'après la vitesse angulaire et la direction de ce mouvement, comparées au diamètre apparent de l'astre, et modifiées d'ailleurs par le mouvement de l'observateur lui-même. Or, maintenant, la réfraction atmosphérique doit, en réalité, diminuer, plus ou moins selon les différens astres, mais toujours très notablement, cette durée géométrique; car elle retarde le commencement de l'occultation, et elle en accélère la fin. Cette influence, entièrement comparable à celle qui prolonge un peu la présence du soleil sur notre horizon, est d'ailleurs beaucoup plus grande; elle quadruple en quelque sorte l'effet direct de la réfraction, puisqu'on cumule ainsi la déviation éprouvée par la lumière à sa sortie de l'atmosphère aussi bien qu'à son entrée, et cela tant à la fin de l'occultation qu'au commencement. On pourra donc, en comparant la durée effective de cette occultation avec sa durée mathématique, connaître, d'après l'excès plus ou moins grand de celle-ci sur l'autre, la valeur de la réfraction horizontale de l'atmosphère proposée, bien plus exactement que par aucune observation directe. Le degré de précision que comporte cette détermination compliquée, et qui est évidemment mesuré par le temps plus ou moins long que l'occultation doit durer, est très inégal suivant les différens astres. C'est ainsi que, pour la lune, qui offre, il est vrai, le cas le plus favorable, on a pu garantir que la réfraction horizontale, dont la valeur est, sur notre terre, de trente-quatre minutes, ne s'élève pas à une seule seconde, d'après les mesures de M. Schroëter, et que, par conséquent, il n'y existe aucune atmosphère appréciable, ce qui a été confirmé plus tard par M. Arago, d'après un tout autre genre d'observations, relatif à la polarisation de la lumière que réfléchissent sous certaines incidences les surfaces liquides, et d'où il est résulté qu'il n'y a point, à la surface de la lune, de grandes masses liquides, susceptibles de former une atmosphère. Parmi tous les autres cas, le mieux connu est celui de Vénus, où M. Schroëter a constaté une réfraction horizontale de trente minutes vingt-quatre secondes.

Quant à l'étendue des atmosphères, il est clair qu'elle est appréciable, jusqu'à un certain point, en examinant, soit d'après le procédé précédent, soit à l'aide d'une observation directe, à quelle distance de la planète peut cesser l'action réfringente. Mais, comme la réfraction décroît graduellement à mesure qu'on s'éloigne de l'astre, elle finit par devenir assez faible pour ne plus exercer aucune influence bien sensible, quoique les limites de l'atmosphère soient peut-être encore très reculées. Le résultat le plus singulier, à cet égard, est celui des planètes télescopiques, en exceptant Vesta, dont les atmosphères sont vraiment monstrueuses; la hauteur de l'atmosphère de Pallas surtout excède, suivant M. Schroëter, douze fois le rayon de la planète. Le cas normal, dans l'ensemble du système solaire, semble être cependant, comme pour la terre, une très petite étendue atmosphérique comparativement aux dimensions de l'astre, quoique l'extrême incertitude de ce genre d'exploration ne permette encore de rien affirmer bien positivement à ce sujet.

Pour compléter l'examen des phénomènes statiques étudiés en géométrie céleste, il me reste enfin à considérer la question fondamentale de la figure et de la grandeur de la terre, qui a dû ci-dessus être soigneusement réservée, à cause de sa nature toute spéciale.