Le mouvement d'un astre, comme celui de tout autre corps, est toujours composé de translation et de rotation. La liaison de ces deux mouvemens est tellement naturelle, ainsi que nous l'avons vu en philosophie mathématique, que la seule connaissance de l'un est un motif extrêmement puissant de présumer l'existence de l'autre. Néanmoins, il est indispensable, en géométrie céleste, de les étudier séparément, car ils présentent des difficultés très inégales.
Quoique les rotations de nos astres aient été connues beaucoup plus tard que leurs translations, vu l'impossibilité de les observer à l'oeil nu, leur étude n'en est pas moins, en réalité, bien plus facile sous le point de vue géométrique, et c'est justement l'inverse sous le point de vue mécanique. Il est d'abord évident que ces rotations peuvent être déterminées géométriquement, sans qu'il soit nécessaire d'avoir aucun égard aux mouvemens de l'observateur lui-même, qui doivent être pris, au contraire, en considération essentielle quand il s'agit d'explorer les translations. En second lieu, la connaissance des rotations est en elle-même d'une bien plus grande simplicité, puisque la question d'orbite, qui constitue la principale difficulté de l'étude des translations, en est nécessairement exclue: elle se rapproche beaucoup, par sa nature, des recherches purement statiques dont nous venons de nous occuper. L'ensemble de ces motifs ne permet point d'hésiter, ce me semble, à placer désormais l'étude des rotations avant celle des translations, dans toute exposition rationnelle de la géométrie céleste.
La connaissance des rotations célestes a commencé par la découverte que fit Galilée de la rotation du soleil, la plus aisée de toutes à déterminer, et qui ne pouvait manquer de suivre presque immédiatement l'invention du télescope. La méthode très simple imaginée dans cette première occasion a été, au fond, constamment la même pour tous les autres cas, qui ne diffèrent que par la difficulté plus ou moins grande de l'observation: elle est directement indiquée par la nature même du problème. En effet, la rotation d'une sphère inaccessible et très éloignée serait impossible à apercevoir, si sa surface était parfaitement polie et exactement uniforme. Mais il suffit de pouvoir y distinguer, soit par leur obscurité, soit, au contraire, par leur éclat, ou de toute autre manière, quelques points reconnaissables, qui soient réellement adhérens à la surface, ou du moins susceptibles d'être regardés comme tels pendant un certain temps (et tel est aujourd'hui le cas de presque tous nos astres intérieurs), pour que l'examen attentif de leur déplacement graduel sur l'image totale permette la détermination géométrique de cette rotation. Un cercle étant connu par trois de ses points, on pourrait, à la rigueur, se borner à observer exactement trois positions successives de l'un quelconque des indices ainsi choisis, en notant avec soin les époques correspondantes. D'après ces données, un calcul géométrique, d'ailleurs un peu compliqué, déterminerait entièrement le parallèle décrit par cet indice, comme le temps employé à le parcourir; conséquemment, la durée totale de la rotation et l'axe autour duquel elle s'effectue seraient ainsi exactement connus. Mais il est évidemment indispensable de combiner un plus grand nombre de positions, et surtout de varier, autant que possible, les indices, pour obtenir des moyens de vérification dans des opérations aussi délicates, qui reposent entièrement sur les seules variations de la différence très petite que présentent, à chaque instant, l'ascension droite et la déclinaison de l'indice comparées à celles du centre de l'astre. Ces comparaisons étaient, en outre, primitivement nécessaires afin de constater l'uniformité réelle de la rotation. Il faut d'ailleurs remarquer que l'observation directe de la durée totale d'une révolution, fondée sur le retour exact du même indice à la même situation, fournit un moyen général de vérification très précieux; pourvu que l'on soit bien assuré de l'invariabilité relative des indices, et même, si la rotation est un peu lente, ce qui n'a guère lieu qu'à l'égard du soleil et de la lune, qu'on ait suffisamment tenu compte du déplacement propre de l'observateur dans cet intervalle.
D'après l'ensemble des conditions du problème, cette détermination doit offrir évidemment un degré de précision très inégal suivant les différens astres. Excepté pour le soleil et la lune, elle exige indispensablement l'emploi des moyens d'observation les plus perfectionnés que possède l'astronomie, dont elle constitue peut-être l'exploration pratique la plus délicate, non-seulement par la difficulté des mesures, mais aussi à cause des illusions presque inévitables auxquelles on est alors exposé, et qui ne peuvent être prévenues qu'à l'aide d'une sorte d'éducation spéciale et graduelle de l'oeil. On se figure aisément quels obstacles doit présenter le succès d'une telle opération, d'après ce seul fait, qu'un observateur exact et recommandable, Bianchini, a pu s'y tromper au point de supposer la rotation de Vénus vingt-quatre fois plus lente qu'elle n'est effectivement. Il y a même des planètes trop éloignées ou trop petites, Uranus, d'une part, et les quatre planètes télescopiques de l'autre, dont la rotation n'est encore nullement déterminée, son existence étant seulement admise à priori, par une analogie et surtout par une induction très puissantes. Il en est ainsi d'ailleurs des satellites de Jupiter et de Saturne, et, à plus forte raison, de ceux d'Uranus, sauf toutefois les motifs généraux qu'on a de penser que, à leur égard comme envers la lune, la durée de la rotation est nécessairement égale à celle de leur circulation autour de la planète correspondante, d'après une notion de mécanique céleste qui sera indiquée en son lieu.
Parmi les rotations bien connues, on n'aperçoit jusqu'ici aucune trace de loi régulière, au sujet de leur durée, qui ne se lie ni aux distances, ni aux grandeurs, et qui paraît seulement, comme je l'ai noté plus haut, avoir une sorte de relation générale avec le degré d'aplatissement: encore cette analogie n'est-elle point sans exception, l'aplatissement de Mars étant beaucoup plus prononcé que celui de la terre ou de Vénus, et sa rotation n'étant certainement point plus rapide. Il faut toutefois remarquer que la rotation du soleil est beaucoup plus lente que celle d'aucune planète. Mais, si les durées des rotations, quoique d'ailleurs rigoureusement invariables, semblent tout-à-fait irrégulières, il n'en est nullement ainsi de leurs directions, ces mouvemens ayant toujours lieu de l'ouest à l'est dans toutes les parties de notre monde, et suivant des plans très peu inclinés sur celui de l'équateur solaire; ce qui constitue une donnée générale fort importante sous le point de vue cosmogonique.
Passons maintenant à l'examen des mouvemens de translation, dont l'étude, beaucoup plus compliquée, est aussi bien autrement importante, en égard au but définitif des recherches astronomiques, la prévision exacte de l'état du ciel à une époque future quelconque, dont je ne saurais craindre de rappeler trop souvent la considération formelle.
Outre que le mouvement de la terre constitue directement une partie fort essentielle de cette grande recherche, il ne saurait évidemment être indifférent, à l'égard des autres astres, de regarder l'observateur comme fixe ou comme mobile, puisque son déplacement doit notablement affecter, de toute nécessité, sa manière d'apercevoir les divers mouvemens extérieurs. On peut bien, à la vérité, décider avec certitude, sans cette connaissance préalable, que le soleil et non la terre est le vrai centre des mouvemens de toutes les planètes, comme l'avait reconnu Tycho-Brahé, en niant notre propre mouvement: car il suffit pour cela de constater, d'après les procédés indiqués dans cette leçon, que les distances des planètes au soleil sont très peu variables, tandis que, au contraire, leurs distances à la terre varient extrêmement; et, en second lieu, que la distance solaire de chaque planète inférieure est constamment moindre, et celle d'une planète supérieure constamment plus grande que l'intervalle entre le soleil et la terre: ce qui résulte des plus simples observations de parallaxe et de diamètre apparent. Mais on ne peut aller plus loin, et déterminer la vraie figure des orbites planétaires, ainsi que la manière dont elles sont parcourues, sans tenir un compte exact et indispensable du déplacement de l'observateur. C'est pourquoi la leçon suivante sera tout entière consacrée à l'examen de la théorie fondamentale du mouvement de la terre, après quoi nous pourrons poursuivre, d'une manière vraiment rationnelle, l'étude générale des mouvemens planétaires. Toutefois, il convient, ce me semble, de compléter la leçon actuelle, en considérant la détermination de certaines données capitales au sujet de ces mouvemens, qui peuvent être obtenues, comme elles l'ont été en effet, sans avoir égard à notre mouvement, et dont la théorie, parfaitement analogue à celle qui vient d'être caractérisée pour les rotations, présente aussi la simplicité essentielle des recherches purement statiques; en sorte que l'homogénéité de cette leçon sera pleinement maintenue. Je veux parler de la connaissance des plans des orbites et de la durée des révolutions sidérales, entièrement indépendante, par sa nature, de tout ce qui concerne la figure des orbites et la vitesse variable de l'astre. On peut même, pour plus de simplicité, regarder ici tous les mouvemens comme circulaires et uniformes, ainsi que les astronomes ont dû le faire primitivement.
Cela posé, il est évident, comme dans le cas des rotations, que, un plan étant déterminé par trois points, il suffit d'observer trois positions différentes de l'astre pour en conclure géométriquement la situation du plan de son orbite. Dans ces opérations, les astronomes ont renoncé depuis long-temps à employer les déclinaisons et les ascensions droites, qui continuent toutefois à être les seules coordonnées directement observées, afin d'adopter l'usage plus commode de deux autres coordonnées sphériques, connues sous les noms impropres de latitude et longitude astronomiques, et qui sont exactement, par rapport à l'écliptique, l'analogue des premières à l'égard de l'équateur. Cette substitution, qui permet de comparer plus aisément les mouvemens des planètes à celui de la terre, s'effectue aisément par des formules trigonométriques invariables, qui conduisent du premier système au second [6]. Après avoir déterminé ainsi la latitude et la longitude de l'astre dans les trois positions considérées, on en déduit la situation de ses noeuds, c'est-à-dire la ligne suivant laquelle son orbite rencontre le plan de l'écliptique, et l'inclinaison de l'orbite sur ce plan. Il est d'ailleurs évident que toutes les autres positions observées fourniront autant de moyens de vérifier et de rectifier cette importante détermination du plan de l'orbite, en ayant soin, pour plus de sûreté, de comparer entre elles des positions suffisamment éloignées. On voit que ce cas comporte, par sa nature, une précision bien plus grande que celui des rotations.
[Note 6: ][ (retour) ] Il serait peut-être plus convenable encore de prendre pour terme de comparaison le plan de l'équateur solaire, du moins jusqu'à l'époque d'une exacte connaissance de ce qu'on appelle le plan invariable. Les coordonnées ne se ressentiraient plus ainsi de la considération spéciale d'une planète unique, et d'ailleurs les orbites planétaires s'approchent en général davantage de ce plan que de celui de l'écliptique. Cette transformation, si jamais elle est jugée utile, s'effectuera évidemment par les mêmes formules qui nous font passer de notre équateur à l'écliptique, en y changeant seulement quelques coefficiens. Au reste, l'équateur terrestre continuera nécessairement à être le terme immédiat de comparaison le plus commode dans toutes les observations.
C'est par là qu'on a reconnu que les plans de toutes les orbites planétaires passent par le soleil, et de même à l'égard des divers satellites d'une planète quelconque; et que ces plans sont, en général, peu inclinés sur l'écliptique, et encore moins sur le plan de l'équateur solaire, sauf les quatre planètes télescopiques où l'on trouve des inclinaisons beaucoup plus considérables.