Je me suis jusqu'ici soigneusement abstenu de qualifier, par aucun terme spécial, la tendance continue des planètes vers le soleil, et des satellites vers leurs planètes, dont l'existence et la loi ont été le seul objet des considérations précédentes. Mais, si ces notions suffisent pour que les phénomènes célestes soient désormais parfaitement liés entre eux, et mathématiquement calculables, c'est surtout par une autre propriété essentielle de la conception fondamentale de Newton qu'ils sont réellement expliqués dans le sens propre du mot, c'est-à-dire compris, d'après leur exacte assimilation générale avec les phénomènes si vulgaires que la pesanteur produit continuellement à la surface de notre globe. Examinons maintenant ce complément indispensable donné par Newton à sa sublime pensée.

Si notre planète n'avait aucun satellite, cette comparaison capitale serait évidemment impossible, comme manquant de base. Il eût fallu alors nous contenter de calculer exactement les mouvemens célestes, d'après les règles générales de la dynamique, sans pouvoir jamais les rattacher à ceux qui s'exécutent journellement parmi nous. Quoique l'harmonie universelle de notre monde devînt ainsi infiniment moindre, cette conception n'en serait pas moins extrêmement précieuse. Mais l'existence de la lune nous a rendu l'immense service philosophique de lier intimement la mécanique du ciel à la mécanique terrestre, en nous permettant de constater l'identité de la tendance continue de la lune vers la terre avec la pesanteur proprement dite: ce qui a suffi pour démontrer ensuite que l'action mutuelle des corps célestes n'était autre chose que la pesanteur convenablement généralisée, ou, en sens inverse, que la pesanteur ordinaire n'était qu'un cas particulier de cette action.

Ce rapprochement fondamental est susceptible d'un examen mathématique qui ne saurait laisser aucune incertitude à cet égard. Car, d'après l'analyse dynamique du mouvement de la lune, on connaît l'intensité de l'action que la terre exerce sur elle, c'est-à-dire la quantité dont elle tend à tomber vers le centre de notre globe en un temps donné, une seconde par exemple. En regardant le mouvement comme circulaire et uniforme, ce que Newton a d'abord jugé avec raison pleinement suffisant ici, cette évaluation se fait aisément, d'après la règle d'Huyghens sur la mesure de la force centrifuge; d'ailleurs, on peut aussi l'effectuer, avec un peu plus de peine, en ayant égard au mouvement elliptique et varié. Elle ne dépend que de données parfaitement connues, sur lesquelles il ne peut y avoir aucune hésitation, le temps périodique de la lune, sa distance à la terre, et enfin le rayon de la terre. Cela posé, il suffit d'augmenter cette intensité primitive, inversement au quarré de la distance, suivant la loi fondamentale, pour savoir ce qu'elle deviendrait en supposant la lune placée tout près de la surface de la terre, afin de la confronter avec l'intensité effective de la pesanteur proprement dite, que nous savons être exactement la même dans tous les corps grands et petits, et qui est mesurable, avec la dernière précision, soit par l'observation directe de la chute des poids, soit surtout par les expériences du pendule. L'identité ou la diversité de ces deux nombres, décidera évidemment, en dernier ressort, pour ou contre l'assimilation entre la tendance de la lune vers la terre et la pesanteur. Or, l'exécution d'une telle comparaison établit la parfaite coïncidence des deux résultats; d'où s'ensuit la démonstration mathématique de cette assimilation. Telle est la marche profondément rationnelle suivie à cet égard par Newton, sauf que, pour plus de clarté, j'ai cru devoir l'indiquer en ordre inverse, ce qui est en soi fort indifférent. L'histoire de ce beau travail nous présente une anecdote très intéressante, qui caractérise fortement l'admirable sévérité de la méthode philosophique constamment suivie, avec une si sage énergie, par le grand Newton. On sait que, dans ses premières recherches, il avait employé une valeur erronée du rayon de la terre, déduite d'une mauvaise mesure exécutée un peu avant lui en Angleterre: il en résultait une différence assez sensible entre les deux nombres qui devaient parfaitement coïncider. Newton eut le rare courage philosophique de renoncer, d'après cela seul et pendant long-temps, à cette partie importante de sa conception générale, jusqu'à ce que Picard eût enfin opéré la mesure exacte de la terre, qui permit à Newton de constater la profonde justesse de sa pensée primitive.

Cette identité entre la tendance de la lune vers la terre et la pesanteur proprement dite présente sous un jour tout nouveau l'ensemble de la conception fondamentale de la mécanique céleste. Elle nous montre le mouvement des astres comme parfaitement semblable à celui des projectiles, qui nous est si familier, et que, par cela seul, nous devons trouver suffisamment compris, et propre à servir de type d'explication. La seule différence réelle qu'il y ait entre eux résulte simplement de ce que nos projectiles ne sont pas lancés d'assez loin, ni assez énergiquement, pour que leur inégal éloignement du centre de notre globe puisse manifester l'influence de la variation de la pesanteur inversement au quarré de la distance. Projetés d'un peu plus haut et avec un peu plus de force, ils circuleraient indéfiniment autour de nous comme de petits astres (sauf la résistance de notre atmosphère), ainsi que le fait la lune, ainsi que la terre elle-même et toutes les planètes le font autour du soleil. C'est par là que l'astronomie tout entière est devenue réellement une sorte de problème d'artillerie, beaucoup simplifié par l'absence d'un milieu sensiblement résistant, mais compliqué, à la vérité, par la variation et la pluralité des pesanteurs.

En même temps que la notion mécanique fondamentale des mouvemens célestes se trouvait ainsi considérablement éclaircie par l'assimilation de la force qui les produit à la pesanteur ordinaire, la conception générale de celle-ci a éprouvé, par une heureuse réaction nécessaire, un immense perfectionnement, puisque la loi de sa variation, imperceptible dans les phénomènes terrestres habituels, a été dès lors immédiatement connue. L'homme avait conçu jusque là le poids d'un corps comme une qualité rigoureusement inaltérable, suivant les expériences les plus diverses et les plus précises, que ni le changement de forme, ni le passage d'une constitution physique à une autre, ni aucune métamorphose chimique, ni la différence même entre l'état de vie et l'état de mort, ne pouvaient nullement modifier, tant que l'intégrité de la substance était maintenue. C'était, en un mot, la seule notion qui pût présenter, même aux philosophes les plus positifs, un véritable caractère d'absolu. Ce caractère, qui devait sembler si indestructible, la conception newtonienne est venue l'effacer entièrement d'un seul trait, en montrant, avec une pleine évidence, que le poids d'un corps est au contraire un phénomène purement relatif, non pas il est vrai aux diverses circonstances dont on avait jusque alors analysé l'influence, et qui effectivement ne l'altèrent en rien, mais à une autre à laquelle on n'eût jamais pensé sans cela, tant elle eût paru devoir être insignifiante, et qui seule le règle souverainement, la simple position de ce corps dans le monde, ou, plus exactement, sa distance au centre de la terre, indépendamment de la direction, au quarré de laquelle il est toujours inversement proportionnel. Sans doute, une connaissance aussi opposée à l'ensemble des idées humaines n'aurait pas même été jamais cherchée directement, si la mécanique céleste ne l'eût, pour ainsi dire, involontairement établie d'une manière invincible, en prouvant l'identité mathématique de la pesanteur avec la force accélératrice des astres, à l'égard de laquelle une telle loi de variation devenait incontestable et évidente. Ainsi avertis, les physiciens ont pu vérifier ensuite, par des expériences directes et irrécusables, en s'écartant plus ou moins du centre de la terre, soit dans le sens vertical, soit surtout dans le sens horizontal, la réalité de cette loi, même à la surface de notre globe, où les différences qu'elle engendre sont trop délicates à constater pour qu'on eût jamais pu les apprécier, si l'on n'eût pas été certain d'avance qu'elles devaient exister.

C'est afin d'énoncer brièvement cette assimilation fondamentale entre la pesanteur et la force accélératrice des astres qu'on a créé le mot heureux de gravitation, envisagé comme exactement synonyme de pesanteur universelle, pour désigner l'action du soleil sur les planètes, et de celles-ci sur leurs satellites. L'emploi de ce terme a le précieux avantage philosophique d'indiquer strictement un simple fait général, mathématiquement constaté, sans aucune vaine recherche de la nature intime et de la cause première de cette action céleste ni de cette pesanteur terrestre. Il tend à faire éminemment ressortir le vrai caractère essentiel de toutes nos explications positives, qui consistent, en effet, à lier et à assimiler le plus complètement possible. Nous ne pouvons évidemment savoir ce que sont au fond cette action mutuelle des astres, et cette pesanteur des corps terrestres: une tentative quelconque à cet égard serait, de toute nécessité, profondément illusoire aussi bien que parfaitement oiseuse; les esprits entièrement étrangers aux études scientifiques peuvent seuls s'en occuper aujourd'hui. Mais nous connaissons, avec une pleine certitude, l'existence et la loi de ces deux ordres de phénomènes; et nous savons, en outre, qu'ils sont identiques. C'est ce qui constitue leur véritable explication mutuelle, par une exacte comparaison des moins connus aux plus connus. Pour le géomètre, qu'une longue et habituelle méditation a profondément familiarisé avec le vrai mécanisme des mouvemens célestes, la pesanteur terrestre est expliquée, quand il la conçoit comme un cas particulier de la gravitation générale. Au contraire, c'est la pesanteur qui fait comprendre la gravitation céleste au physicien proprement dit, ainsi qu'au vulgaire, la notion lui en étant seule suffisamment familière. Nous ne pouvons jamais aller réellement au-delà de semblables rapprochemens.

D'après ces principes élémentaires de la philosophie positive, je ne saurais ici trop fortement blâmer l'usage irrationnel que l'on fait encore si fréquemment du mot attraction, dans l'étude de la mécanique céleste. Son emploi, qu'un simple artifice de langage eût toujours permis d'éviter, est surtout devenu sans excuse depuis la formation du mot gravitation. Quoique cette réserve du style ne doive sans doute dégénérer jamais en une affectation puérile et pédantesque, il importe infiniment que le discours maintienne inaltérable le vrai caractère d'une conception positive aussi fondamentale. Or, le mot attraction tend, par lui-même, à jeter aussitôt l'esprit dans une direction vague et anti-scientifique, par la prétention qu'il annonce inévitablement, malgré tous les commentaires préalables, à caractériser le mode d'action du soleil sur les planètes, et de la terre sur les poids, en le comparant à l'effort par lequel nous tirons à nous, à l'aide d'un lien quelconque, un objet éloigné: car tel est le sens de ce terme, ou il n'en a aucun. Depuis un siècle que cette expression est usitée scientifiquement, il me semble étrange qu'on n'ait pas encore nettement senti qu'une telle comparaison n'est nullement propre, en n'y voyant même qu'une image grossière, à donner aucune idée de l'action solaire ou terrestre, dont elle tend, au contraire, à obscurcir la notion. Car, une semblable métaphore ne pourrait avoir quelque utilité dans le discours que si l'action effective de tirer était réellement influencée par la distance, ce qui est évidemment absurde: qu'un objet soit à dix mètres ou à cent, le même effort l'attirera vers nous exactement de la même quantité, en négligeant du moins la masse et la raideur du lien. Comment un tel mot serait-il donc propre à qualifier un phénomène qui, à une distance décuple, est nécessairement cent fois moindre, sans qu'aucune autre circonstance ait changé? Je ne vois, dans son emploi, qu'un grand nombre d'inconvéniens majeurs, sans le moindre avantage réel.

Il y a tout lieu de penser que cette idée inintelligible d'attraction fut pour beaucoup dans l'opposition que rencontra si long-temps, surtout en France, la conception newtonienne, dont l'étude approfondie n'avait point encore démontré combien elle est au fond nécessairement indépendante d'une telle notion. Elle devait, en effet, sous une semblable forme, se présenter naturellement à nos penseurs comme susceptible de faire rétrograder la philosophie, et de la ramener à l'état métaphysique, en rétablissant ces qualités occultes que notre grand Descartes avait, après tant d'efforts, si justement bannies. Telle est aussi la principale objection que les cartésiens, parmi lesquels on distingue l'illustre Jean Bernouilli et le sage Fontenelle, reproduisent continuellement dans tous leurs écrits. Il n'est pas douteux, ce me semble, que l'esprit français, éminemment clair et positif, n'ait ainsi puissamment contribué, en résultat général de cette utile discussion, à épurer le caractère primitif de la pensée fondamentale de Newton, en détruisant l'apparence métaphysique qui altérait la réalité admirable de cette sublime découverte.

Pour compléter l'examen général de la loi de la gravitation, il faut encore l'envisager sous un dernier aspect élémentaire, indispensable à son entière explication mathématique.

Nous avons jusqu'ici considéré l'action du soleil sur les planètes et de celles-ci sur leurs satellites, sans avoir aucun égard aux dimensions et aux formes de ces grands corps, et comme si tous étaient autant de points. Mais, la proportionnalité bien constatée entre l'intensité de cette action et la masse du corps qui l'éprouve, montre clairement qu'elle ne s'exerce directement que sur les molécules, qui toutes y participent indépendamment les unes des autres, et avec une égale énergie, sauf la diversité des distances. La gravitation moléculaire est donc seule réelle, et celle des masses n'en peut être que le résultat mathématique. Celle-ci néanmoins peut seule être immédiatement considérée, soit dans l'observation des phénomènes, soit dans l'étude mathématique des mouvemens, qui exige indispensablement la conception d'une force unique, au lieu de cette infinité d'actions élémentaires. De là est résulté nécessairement une partie essentielle, quoique préliminaire, de la mécanique céleste, celle qui a pour objet de composer en une seule résultante toutes les gravitations mutuelles des molécules de deux astres. Cette portion, aujourd'hui très étendue, a été, comme toutes les autres, fondée par Newton, et les deux théorèmes essentiels qu'il a primitivement établis à ce sujet, sont encore ce que cette importante théorie présente de plus usuel. Ils reposent sur la forme presque exactement sphérique de tous les astres. En supposant des sphères parfaites, et composées de couches homogènes, dont la densité varie d'ailleurs arbitrairement, Newton a découvert, par des considérations géométriques extrêmement simples: 1º. que les gravitations mutuelles de toutes les molécules d'une même couche sur un point intérieur quelconque se détruisent nécessairement; 2º que la gravitation totale d'un point extérieur vers les diverses molécules de la sphère, est exactement la même que si la masse entière de cette sphère était condensée à son centre; et qu'il en est par conséquent ainsi de la gravitation mutuelle de deux sphères. Il en résulte immédiatement la précieuse faculté de pouvoir traiter les corps célestes comme des points, dans l'étude de leurs mouvemens de translation. Mais, l'irrégularité effective de la figure des astres, quelque petite qu'elle soit, a besoin d'être prise en considération dans la théorie de leurs rotations, où ces théorèmes cessent d'être applicables. C'est même seulement d'après cette différence que les géomètres ont pu expliquer, à cet égard, plusieurs phénomènes importans, comme je l'indiquerai dans la vingt-sixième leçon. Pour toute autre forme que la sphère, le problème général se complique beaucoup, et les difficultés analytiques qu'il présente ne sont encore habituellement surmontables que par approximation, malgré l'importance des derniers perfectionnemens introduits dans cette théorie, surtout par les travaux tout récens de M. Jacobi. Enfin la solution parfaitement exacte exigerait évidemment la connaissance de la vraie loi de la densité dans l'intérieur des astres, qu'on ne peut guère envisager comme susceptible d'être jamais réellement obtenue.