La seconde grande détermination statique que nous devions caractériser dans la mécanique céleste, concerne l'importante et difficile étude mathématique de la figure des astres, envisagée comme déduite de la théorie générale de leur équilibre, indépendamment d'aucune mesure géométrique.
Si la terre, ou toute autre planète, avait toujours été dans l'état de consistance que nous observons, la mécanique céleste n'aurait évidemment aucune base pour déterminer à priori sa figure, puisque l'équilibre d'un système solide est certainement compatible avec une forme extérieure quelconque. C'est pourquoi les géomètres, afin d'étudier la figure des astres d'après les règles générales de la statique, ont dû les supposer antérieurement fluides, du moins à la surface, ce qui ne permet plus l'équilibre qu'avec certaines formes spéciales. L'accord remarquable des principaux résultats de cette hypothèse indispensable avec l'ensemble des observations directes, a démontré ensuite la justesse d'une conjecture indiquée d'ailleurs, surtout envers la terre, par beaucoup d'autres phénomènes.
En considérant ainsi la question d'une manière générale, il est d'abord évident que, si les astres n'avaient aucun mouvement de rotation, la figure parfaitement sphérique conviendrait à l'équilibre de leurs molécules, puisque la pesanteur, dès lors constamment dirigée au centre, serait toujours perpendiculaire aux couches de niveau, pourvu qu'on les supposât homogènes, et que la densité variât seulement de l'une à l'autre, suivant une loi d'ailleurs arbitraire. Mais on conçoit aisément que la force centrifuge engendrée par la rotation doit nécessairement modifier cette forme primitive, en altérant plus ou moins soit la direction, soit l'intensité de la pesanteur proprement dite.
Sous le premier point de vue, qui est celui d'Huyghens, il est facile de constater que si la terre, par exemple, était exactement sphérique, la force centrifuge écarterait sensiblement le fil-à-plomb de la direction perpendiculaire à la surface. Cette déviation, nécessairement nulle au pôle, où la force centrifuge n'existe pas, et à l'équateur, où elle agit suivant la même droite que la pesanteur, atteindrait son maximum vers quarante-cinq degrés de latitude, où elle devrait être d'environ six minutes, et, par conséquent, très appréciable. Ainsi, la droite décrite par les corps dans leur chute naturelle, c'est-à-dire celle suivant laquelle se dirige, en chaque lieu, la résultante de la gravité et de la force centrifuge, ne saurait être, conformément à toutes les observations et à la théorie générale de l'équilibre des fluides, exactement perpendiculaire à la surface, qu'autant que la planète cesse d'être une sphère parfaite, pour devenir un sphéroïde aplati aux pôles et renflé à l'équateur.
Il en est de même sous le point de vue de l'intensité, que Newton adopta. Deux colonnes fluides menées du centre de l'astre à son pôle et à son équateur, doivent nécessairement, pour l'égalité de leurs poids, avoir des longueurs inégales, puisque la gravité naturelle n'est nullement affaiblie dans la première par la force centrifuge, qui, au contraire, diminue diversement la pesanteur propre à chacun des points de la seconde. La comparaison des colonnes correspondantes à deux latitudes quelconques donnerait lieu évidemment à une remarque analogue, la différence y étant seulement moins prononcée. Les divers rayons de l'astre doivent donc augmenter graduellement depuis le pôle jusqu'à l'équateur, et rester seulement égaux entre eux à la même latitude, comme dans une surface de révolution.
Cette première vue du sujet explique donc, d'une manière aussi élémentaire que satisfaisante, et la forme presque sphérique de tous nos astres, et le léger aplatissement que chacun d'eux nous présente à ses pôles. Mais quand on veut aller au-delà de cet aperçu général, et déterminer mathématiquement la véritable figure, ainsi que la valeur exacte de l'aplatissement, la question devient tout-à-coup transcendante, et présente des obstacles qui ne sauraient jamais être entièrement surmontés.
La cause essentielle de ces hautes difficultés tient à ce que, par sa nature, le fond d'une telle recherche présente une sorte de cercle vicieux, qui ne comporte point d'issue parfaitement rationnelle. En effet, la théorie mathématique de l'équilibre des fluides exige évidemment que, pour former l'équation de la surface, on connaisse d'abord la vraie loi de la pesanteur dont ses diverses molécules sont animées. Or, d'un autre côté, cette loi ne saurait être exactement déterminée, d'après la théorie fondamentale de la gravitation, qu'autant que la forme de l'astre, et même le mode de variation de la densité dans son intérieur, seraient préalablement donnés. Il est donc impossible, même en supposant l'astre homogène, d'obtenir une solution directe et complète qui indique avec une pleine certitude les formes propres à l'équilibre, en donnant une exclusion nécessaire à toutes les autres. On ne peut réellement qu'essayer si telle figure proposée remplit ou non les conditions fondamentales. Aussi les géomètres attachent-ils avec raison un très grand prix au beau théorème découvert par Maclaurin, qui est devenu le fondement nécessaire de toutes leurs recherches à ce sujet [14], en démontrant que l'ellipsoïde de révolution satisfait exactement aux conditions de l'équilibre. Ce point de départ, que Maclaurin avait établi seulement dans l'hypothèse de l'homogénéité, fut ensuite étendu par Clairaut au cas d'un astre composé de couches dont la densité varie arbitrairement, et qui ne serait même que partiellement fluide [15]. La question a dès lors été réduite à la détermination du rapport des deux axes. Or, cette évaluation ne présente aucune difficulté en regardant l'astre comme homogène. Mais les mesures directes ayant toujours montré, à l'égard des diverses planètes, un aplatissement moindre que celui obtenu ainsi, cette hypothèse, directement reconnue fausse d'ailleurs envers la terre, comme nous l'avons vu plus haut, et évidemment invraisemblable en général, a dû être définitivement exclue. Dès ce moment, l'aplatissement a cessé de comporter une détermination directe et rigoureuse, puisque nous ignorons nécessairement la vraie loi suivant laquelle la densité croît de la surface au centre dans un astre quelconque, et qu'il serait strictement indispensable d'y avoir égard. Néanmoins, les travaux des géomètres, et surtout de Laplace, sur l'influence de diverses lois de la densité, ont fait connaître des limites très précieuses, souvent fort resserrées, entre lesquelles l'aplatissement doit inévitablement tomber. La plus générale et la plus usuelle consiste en ce que cet aplatissement est compris, de toute nécessité, pour un astre quelconque, entre les cinq quarts et la moitié du rapport de la force centrifuge à l'équateur à la gravité correspondante, puisque la première valeur aurait lieu si l'astre était homogène, et la seconde si la densité croissait avec une telle rapidité qu'elle devînt infinie au centre. C'est ainsi que l'aplatissement terrestre ne peut excéder un deux cent trentième, ni être moindre qu'un cinq cent soixante-dix-huitième; ce qui est parfaitement conforme aux mesures directes, que cette règle mathématique a plus d'une fois servi à contrôler.
[Note 14: ][ (retour) ] Le travail de Newton ne fit réellement que poser la question, puisqu'il y avait supposé, sans aucune démonstration, la figure elliptique des méridiens, ce qui réduisait dès lors la recherche à la mesure de l'aplatissement, extrêmement facile dans l'hypothèse d'homogénéité qu'il avait adoptée.
[Note 15: ][ (retour) ] M. Jacobi a fait tout récemment, pour le seul cas de l'homogénéité, la découverte remarquable de la possibilité de l'équilibre avec un ellipsoïde à trois axes inégaux, dont le moindre est toujours nécessairement celui du pôle.
Au reste, dans presque toutes les planètes, l'aplatissement exerce, comme nous l'indiquerons prochainement, une influence nécessaire et appréciable sur certains phénomènes de perturbation, ce qui fournit de nouveaux moyens indirects de le déterminer, en éludant la difficulté insurmontable que présente à cet égard la théorie de l'équilibre des astres.