Après les phénomènes de la gravité, ceux de la chaleur sont, incontestablement, les plus universels de tous les phénomènes physiques. Dans l'économie générale de la nature terrestre, morte ou vivante, leur fonction est aussi importante que celle des premiers, dont ils sont habituellement les principaux antagonistes. Si l'étude géométrique ou mécanique des corps réels est surtout dominée par la considération de la gravité, l'influence de la chaleur devient, à son tour, prépondérante, lorsqu'on envisage les modifications plus profondes, relatives ou à l'état d'agrégation, ou à l'intime composition des molécules; la vitalité, enfin, lui est essentiellement subordonnée. Quant à l'action de l'homme sur la nature, c'est une sage application de la chaleur qui la constitue principalement. Ainsi, après la barologie, aucune partie de la physique ne saurait mériter autant que la thermologie l'attention des esprits qui conçoivent l'ensemble de la philosophie naturelle.
Les premières observations thermologiques, entreprises dans une intention scientifique, sont presque aussi anciennes que les découvertes de Stévin et de Galilée sur la pesanteur; puisque l'invention primitive du thermomètre remonte, comme on sait, au commencement du dix-septième siècle, et que l'illustre académie del Cimento n'a cessé de se livrer, avec un zèle persévérant, à l'étude de la chaleur, pendant toute la durée de sa trop courte existence. Il est néanmoins incontestable que, vu la complication supérieure de ses phénomènes, la thermologie a toujours été fort en arrière de la barologie. À la fin du dix-septième siècle, elle était encore si peu avancée, que les indications thermométriques ne pouvaient même être comparées, faute des deux points fixes, dont la nécessité fut alors signalée par Newton. Mais cette imperfection relative devient bien plus sensible en considérant surtout la nature si opposée des recherches dont ces deux branches de la physique étaient alors le sujet. Tandis que les physiciens avaient essentiellement renoncé, depuis long-temps, envers la pesanteur, à deviner la nature intime et le mode de production des phénomènes, pour se borner à en découvrir, par une observation rationnelle, les lois effectives, ils ne regardaient comme dignes de leur attention, dans l'étude plus difficile de la chaleur, que les tentatives chimériques sur la nature du feu, où les faits ne jouaient qu'un rôle pour ainsi dire épisodique. On voit encore, presque au milieu du siècle dernier, l'Académie des Sciences de Paris couronner, à ce sujet, des dissertations essentiellement métaphysiques, dont une entre autres, composée d'ailleurs avec un talent remarquable, était due à l'association de Voltaire avec Mme du Châtelet. C'est seulement pendant la dernière moitié de ce siècle, lorsque toutes les parties importantes de la barologie étaient déjà à peu près aussi développées qu'aujourd'hui, que la thermologie commença à prendre un caractère vraiment scientifique, en vertu de l'heureuse impulsion déterminée surtout par la découverte capitale de Black. Dès lors, l'analyse des phénomènes et la recherche de leurs relations ont attiré de plus en plus l'attention des physiciens, qui en ont fait enfin le principal objet de leurs travaux. Toutefois, ils n'ont pas encore entièrement renoncé aux hypothèses primitives sur la cause et l'essence du feu: seulement ils en ont subordonné l'usage à l'étude des phénomènes, que ces conceptions imaginaires sont destinées, dit-on, à faciliter. Mais, pour quiconque a suivi convenablement cette marche historique, une telle inversion des rôles, à l'égard d'hypothèses jadis souveraines, est un symptôme irrécusable de leur décadence définitive et prochaine. La haute influence des travaux de l'illustre Fourier doit nécessairement hâter beaucoup ici le développement naturel de la saine philosophie, comme je l'ai indiqué déjà dans l'avant-dernière leçon. Il est certain, en effet, que de toutes les branches de la physique encore envahies par cet esprit anti-scientifique, la thermologie est aujourd'hui la plus près d'échapper complétement à son influence. Cette importante réforme sera même accélérée par l'ébranlement que produit, depuis le commencement de ce siècle, le choc des deux principales hypothèses sur la nature de la chaleur, et qui tend à les discréditer également auprès des physiciens les plus rationnels.
Entre toutes les branches de la physique auxquelles on applique l'analyse mathématique, l'étude des lois générales de la chaleur se distingue éminemment par le caractère spécial qu'y présente aujourd'hui cette application. En barologie, cette analyse remplit, il est vrai, une fonction parfaitement rationnelle, comme je l'ai montré dans la leçon précédente; mais son introduction n'y offrait aucune difficulté propre, puisque, après les découvertes physiques fondamentales, la théorie de la pesanteur rentrait d'elle-même dans le ressort de la mécanique rationnelle. Il en est essentiellement ainsi, quoiqu'à un degré moindre, pour l'acoustique. En électrologie, et même, à certains égards, en optique, on a bien tenté de procéder d'une manière analogue, c'est-à-dire d'y appliquer l'analyse mathématique en ramenant les questions à de simples recherches de mécanique générale; mais ce n'a pu être qu'en se fondant sur les hypothèses arbitraires des fluides et des éthers imaginaires, ce qui rend une telle application radicalement illusoire. Au contraire, la théorie analytique de la chaleur présente un caractère scientifique aussi satisfaisant que celles de la pesanteur et du son; et, néanmoins, elle ne pouvait être traitée comme une dépendance de la mécanique abstraite, à moins de faire reposer une telle relation sur de semblables chimères, ce qu'a si parfaitement évité son illustre fondateur. Cette théorie a donc exigé une conception spéciale et directe, ainsi qu'une analyse non moins nouvelle. Afin de faire mieux ressortir ces propriétés fondamentales, je consacrerai exclusivement la leçon suivante à l'examen philosophique de la thermologie mathématique, et je me bornerai dans la leçon actuelle à considérer seulement l'étude purement physique de la chaleur, qui doit d'ailleurs servir, évidemment, de base nécessaire et d'introduction naturelle à son étude mathématique.
La thermologie physique se décompose rationnellement, suivant les phénomènes qu'elle envisage, en deux parties bien distinctes, quoique étroitement liées l'une à l'autre. Dans la première, on étudie les lois de l'action thermologique proprement dite; c'est-à-dire de l'influence mutuelle des corps pour faire varier leurs températures respectives, sans s'occuper des altérations qui en résulteront à d'autres égards. La seconde partie consiste, au contraire, dans l'étude de ces altérations, c'est-à-dire, des modifications ou même des changemens que la constitution physique des corps peut éprouver par suite de leurs variations de température, en s'arrêtant au degré où ces effets commenceraient à porter sur la composition moléculaire, et appartiendraient dès lors au domaine de la chimie [25]. Considérons d'abord le premier ordre de phénomènes, dont l'analyse se réduit à la théorie de l'échauffement et du refroidissement.
[Note 25: ][ (retour) ] On admet souvent une troisième partie, toutefois bien moins tranchée, relative aux sources de la chaleur et du froid. Mais, en excluant les sources chimiques, qui sont les principales, cette section rentre essentiellement dans les deux autres, sauf le cas de la production de la chaleur par le frottement, dont l'étude est jusqu'ici fort imparfaite.
Entre deux corps, dont les températures, d'ailleurs quelconques, sont exactement égales, il ne se produit jamais aucun effet thermologique. L'action commence aussitôt que, par une cause quelconque, les températures deviennent inégales. Envisagée d'une manière générale, elle consiste en ce que le corps le plus chaud élève la température de l'autre, tandis que celui-ci abaisse celle du premier; en sorte que leur influence mutuelle tend à les ramener plus ou moins promptement à une température commune, intermédiaire entre les deux primitives. Quoique, le plus souvent, cet état final soit inégalement éloigné des deux extrêmes, l'action, convenablement estimée, n'en est pas moins, dans un tel ordre de phénomènes, parfaitement équivalente à la réaction en sens contraire. Examinons sommairement leurs principales lois, en les dégageant de toute intervention des hypothèses arbitraires par lesquelles on prétend encore les expliquer, et qui n'ont d'autre effet réel que d'en obscurcir la notion et d'en compliquer l'étude [26].
[Note 26: ][ (retour) ] Cette tendance aux entités, quoique aujourd'hui fort affaiblie, est encore si prononcée chez la plupart des physiciens actuels, qu'on a été sur le point, au commencement de ce siècle, d'admettre définitivement, en thermologie, comme on le fait en électrologie, deux fluides imaginaires, l'un pour la chaleur, l'autre pour le froid, à cause des phénomènes connus sous le nom de réflexion du froid, qui, ayant été d'abord mal analysés, ne paraissaient point suffisamment expliqués avec un fluide unique, dont on a fini néanmoins par se contenter.
Il convient, pour cela, de distinguer, d'après tous les physiciens, deux cas essentiels, suivant que les corps agissent thermologiquement les uns sur les autres à des distances plus ou moins considérables, ou bien au contact immédiat. Le premier cas constitue ce qu'on nomme le rayonnement de la chaleur.
La communication directe de la chaleur entre deux corps parfaitement isolés l'un de l'autre a été long-temps niée par des physiciens qui regardaient l'air, ou tout autre milieu, comme un intermédiaire indispensable. Mais elle est maintenant incontestable, puisque l'action thermologique s'accomplit même dans le vide; outre que le peu de densité et la faible conductibilité de l'air ne sauraient évidemment permettre d'expliquer, par sa seule intervention, les effets observés dans la plupart des cas ordinaires. Cette action, ainsi que celle de la gravité, s'étend sans doute à toutes les distances, conformément au rapprochement fondamental indiqué par Fourier entre ces deux grands phénomènes: car nous pouvons concevoir aujourd'hui les divers astres de notre monde, comme exerçant à cet égard une influence mutuelle appréciable; et même, la température propre à l'ensemble de notre système solaire paraît devoir être essentiellement attribuée à l'équilibre thermométrique vers lequel tendent toutes les parties de l'univers.
La première loi générale relative à une telle action, consiste dans sa propagation constamment rectiligne. C'est ce fait capital qu'on a tenté de formuler, d'après l'hypothèse du fluide calorifique, par l'expression de rayonnement, qui indique le trajet des molécules du calorique, et qu'on a transportée ensuite à l'hypothèse de l'éther, où elle désigne les séries linéaires de vibrations. Mais la loi, en elle-même, est parfaitement indépendante de l'une ou l'autre supposition, et il importe beaucoup de l'en dégager, afin d'ôter à une vérité physique aussi essentielle l'apparence métaphysique d'une conception arbitraire. Cela n'empêche nullement de conserver l'expression utile de rayon de chaleur, pourvu qu'on la restreigne avec scrupule à désigner la droite suivant laquelle deux points agissent thermologiquement l'un sur l'autre; elle devient alors l'énoncé abstrait et concis de ce simple fait général, si fécond en applications importantes: c'est selon une telle droite que doivent être placés les corps susceptibles d'absorber la chaleur pour empêcher cette action mutuelle.