Parmi toutes les branches principales de la physique, l'acoustique est, sans doute, après la barologie, celle qui, par sa nature, comporte le plus directement, et de la manière la plus satisfaisante, une large application des doctrines et des méthodes mathématiques. Considérés, en effet, sous le point de vue le plus général, les phénomènes sonores se rattachent évidemment à la théorie fondamentale des oscillations très petites d'un système quelconque de molécules autour d'une situation d'équilibre stable. Car, pour que le son se produise, il faut d'abord qu'il y ait perturbation brusque dans l'équilibre moléculaire, en vertu d'un ébranlement instantané; et il est tout aussi indispensable que ce dérangement passager soit suivi d'un retour suffisamment prompt à l'état primitif. Les oscillations plus ou moins perceptibles et continuellement décroissantes qu'effectue ainsi le système en-deçà et au-delà de sa figure de repos, sont, par leur nature, sensiblement isochrones, puisque la réaction élastique en vertu de laquelle chaque molécule tend à reprendre sa position initiale est d'autant plus énergique que l'écartement a été plus grand, comme dans le cas du pendule. Pourvu que ces vibrations ne soient pas trop lentes, il en résulte toujours un son appréciable. Une fois produites dans le corps directement ébranlé, elles peuvent être transmises à de grands intervalles, à l'aide d'un milieu quelconque suffisamment élastique, et principalement de l'atmosphère, en y excitant une succession graduelle de dilatations et contractions alternatives, que leur analogie évidente avec les ondes formées à la surface d'un liquide a fait justement qualifier d'ondulations sonores. Dans l'air, en particulier, vu sa parfaite élasticité, l'agitation doit se propager, non-seulement suivant la direction de l'ébranlement primitif, mais encore en tous sens au même degré. Enfin, les vibrations transmises sont toujours nécessairement isochrones aux vibrations primitives, quoique leur amplitude puisse être d'ailleurs fort différente.
L'analyse la plus élémentaire du phénomène général des vibrations sonores, a donc suffi pour faire concevoir cette étude, presque dès son origine, comme immédiatement subordonnée aux lois fondamentales de la mécanique rationnelle. Aussi, d'après Newton, auquel est due la première tentative pour déterminer rationnellement la vitesse de propagation du son dans l'air, l'acoustique a-t-elle toujours été plus ou moins mêlée à tous les travaux des géomètres sur le développement de la mécanique abstraite. Ce sont même de simples considérations d'acoustique qui ont primitivement suggéré le beau principe général découvert par Daniel Bernouilli, relativement à la coexistence nécessaire et sans confusion des petites oscillations de diverses sortes que produisent à la fois, dans un système quelconque, plusieurs ébranlemens distincts. Un tel théorème n'est plus maintenant, sans doute, aux yeux des géomètres, comme je l'ai indiqué dans la dix-huitième leçon, que l'interprétation naturelle et générale du caractère analytique propre aux équations différentielles qui expriment les perturbations quelconques de tout l'équilibre stable. Mais, c'est dans les phénomènes sonores que se trouve directement sa réalisation la plus évidente et la plus étendue; puisque, sans cette loi, il serait impossible d'expliquer le phénomène le plus vulgaire de l'acoustique, la simultanéité des sons nombreux et néanmoins parfaitement distincts que nous entendons à chaque instant.
Quoique la relation de l'acoustique avec la mécanique rationnelle soit ainsi presque aussi directe et aussi complète que celle de la barologie elle-même, les moyens de perfectionnement qui doivent naturellement résulter de ce caractère mathématique n'ont point, à beaucoup près, autant d'efficacité réelle dans la théorie du son que dans l'étude de la pesanteur. Les recherches barologiques, du moins quand on s'y borne aux questions les plus simples, qui sont aussi les plus importantes, se rattachent directement aux théories mécaniques les plus fondamentales et les plus nettes: leurs équations ne présentent point ordinairement de grandes difficultés analytiques. Au contraire, l'étude mathématique des vibrations sonores dépend uniquement d'une théorie dynamique très difficile et fort délicate, celle des perturbations d'équilibre: les équations différentielles qu'elle fournit se rapportent toujours nécessairement à la partie la plus élevée et la plus imparfaite du calcul intégral. La nature de cet ouvrage ne saurait permettre de considérer ici, même sommairement, le mode de formation de ces équations: mais il est évident qu'elles doivent être aux différences partielles, et au moins du second ordre; leur composition, nécessairement linéaire, est la seule circonstance favorable qui ait pu fournir un point d'appui aux efforts des géomètres pour parvenir, dans les cas les plus simples, à leur intégration. Le mouvement vibratoire suivant une seule dimension, est encore, même à l'égard des solides, le seul dont la théorie mathématique soit jusqu'ici vraiment complète par les travaux successifs de D'Alembert, de Daniel Bernouilli, et de Lagrange. La mémorable impulsion donnée à la science, sous ce rapport, par le génie d'une illustre contemporaine, dont la perte récente est si regrettable [30], a conduit, il est vrai, les géomètres à considérer, dans ces derniers temps, un cas plus difficile et plus rapproché de la réalité, les vibrations des surfaces. Mais jusqu'à présent cette nouvelle étude mathématique n'est point assez avancée pour concourir utilement au perfectionnement effectif de l'acoustique, encore essentiellement réduite à cet égard aux seules ressources de la pure expérimentation, comme à l'époque des premières observations de M. Chladni. Quant au mouvement vibratoire, envisagé suivant les trois dimensions, sa théorie analytique est aujourd'hui entièrement ignorée, même en ce qui concerne le simple établissement de l'équation: et, cependant, c'est peut-être le cas dont l'examen mathématique aurait le plus d'importance, soit comme étant, au fond, le seul pleinement réel, soit à cause des obstacles presque insurmontables qu'il oppose, par sa nature, à l'exploration directe.
[Note 30: ][ (retour) ] On apprécierait imparfaitement la haute portée de mademoiselle Sophie Germain, si l'on se bornait à l'envisager comme géomètre, quel que soit l'éminent mérite mathématique dont elle a fait preuve. Son excellent discours posthume, publié en 1833, sur l'état des sciences et des lettres aux différentes époques de leur culture, indique en elle une philosophie très élevée, à la fois sage et énergique, dont bien peu d'esprits supérieurs ont aujourd'hui un sentiment aussi net et aussi profond. J'attacherai toujours le plus grand prix à la conformité générale que j'ai aperçue dans cet écrit avec ma propre manière de concevoir l'ensemble du développement intellectuel de l'humanité.
Afin de se former une juste idée générale des hautes difficultés que présente nécessairement l'étude mathématique des mouvemens vibratoires, il faut considérer, en outre, que ces vibrations doivent déterminer habituellement, dans la constitution moléculaire des corps, certaines modifications physiques d'une autre nature, dont la réaction peut affecter ensuite le phénomène sonore primitif. Quoique ces modifications soient trop faibles, et surtout trop passagères, pour être jusqu'ici, et peut-être jamais, directement appréciables, on conçoit que leur influence sur un phénomène aussi délicat que celui des vibrations sonores puisse n'être pas réellement insensible: seulement, la difficulté fondamentale du problème en sera beaucoup augmentée, par la nécessité de le compliquer d'élémens essentiellement inconnus. La seule action de ce genre qu'on ait encore tenté de prendre en considération, consiste dans les effets thermologiques qui résultent nécessairement du mouvement vibratoire. Laplace en a très heureusement profité pour expliquer, d'une manière satisfaisante, la notable différence entre la vitesse du son dans l'air, déterminée expérimentalement, et celle qu'indiquait la formule dynamique, dont le résultat était en défaut d'environ un sixième, ce qui ne pouvait évidemment être attribué aux erreurs d'observation. Cette différence a été comblée en ayant convenablement égard à la chaleur dégagée par la compression des couches atmosphériques, qui doit faire varier leur élasticité dans un plus grand rapport que leur densité, et, par conséquent, accélérer la propagation du mouvement vibratoire. À la vérité, une telle explication présente encore une lacune essentielle; puisque, dans l'impossibilité de mesurer directement ce dégagement de chaleur, il a fallu lui supposer expressément la valeur propre à faire cesser la discordance des deux vitesses. Quoique cette valeur n'offre aucune invraisemblance, il reste à désirer qu'une estimation réelle de cet effet thermologique vienne confirmer définitivement cette ingénieuse conjecture, comme une expérience intéressante de M. Clément permet de l'espérer. Mais, quelle que puisse être l'issue d'une telle comparaison, cette idée de Laplace aura toujours mis en évidence désormais la nécessité permanente de combiner les considérations thermologiques avec la théorie purement dynamique des mouvemens vibratoires, malgré la nouvelle complication que le problème doit ainsi inévitablement éprouver. La modification qui en résulte est, sans doute, par sa nature, beaucoup moins prononcée, quant à la propagation du son dans les liquides, et surtout dans les solides: toutefois, le défaut d'expériences comparatives suffisamment exactes ne permet point encore de juger si elle est alors tout-à-fait négligeable.
Nonobstant les difficultés capitales qui caractérisent nécessairement la théorie mathématique des vibrations sonores, elle n'en a pas moins exercé jusqu'ici, quelque imparfaite qu'elle soit encore, l'influence la plus heureuse sur les progrès effectifs de l'acoustique, qui lui sont, en réalité, essentiellement dus. Sous le point de vue le plus philosophique, la simple formation des équations différentielles propres aux phénomènes sonores constitue déjà, par elle-même, et indépendamment de leur intégration, une connaissance fort importante, à cause des lumineux rapprochemens que comporte si naturellement l'emploi judicieux de l'analyse mathématique entre les questions, d'ailleurs hétérogènes à tous autres égards, qui peuvent conduire à des équations semblables. Cette admirable propriété fondamentale, si fréquemment signalée jusqu'ici dans cet ouvrage, s'applique d'une manière très remarquable à la théorie du son, surtout depuis la création de la thermologie mathématique, dont les principales équations offrent tant d'analogie avec celles des mouvemens vibratoires, qui n'en diffèrent quelquefois que par le signe d'un coefficient.
Outre la haute importance directe évidemment propre aux lois précises des vibrations sonores, dans les cas, malheureusement trop rares, où l'analyse mathématique a pu jusqu'ici nous les dévoiler complétement, ce précieux moyen d'investigation acquiert un surcroît spécial de valeur, vu les difficultés particulières que présente, par sa nature, l'exploration directe des phénomènes du son, considérés d'une manière un peu approfondie. Il est aisé, sans doute, de rendre sensible, par une expérience décisive, la nécessité du milieu atmosphérique pour la transmission habituelle des vibrations sonores, comme on l'a fait dès l'origine de l'acoustique. On conçoit de même que, par des expériences convenablement instituées, il nous soit possible de déterminer avec exactitude la durée effective de cette propagation, d'abord dans l'air, et ensuite dans tout autre milieu. Mais les lois générales des vibrations des corps sonores échappent presque toujours à l'observation immédiate. Quoique l'existence de ces vibrations soit constamment évidente, leur faible intensité habituelle, et leur durée trop fugitive sans aucun vestige appréciable, ne permettent guère à nos sens de les explorer d'une manière suffisamment précise. Le degré de rapidité qu'elles doivent avoir pour qu'il en résulte un son perceptible, doit même s'opposer le plus souvent à leur simple énumération directe. Ainsi, nos connaissances réelles à cet égard étant encore bien peu étendues, elles seraient, évidemment, presque nulles si la théorie mathématique, liant entre eux les divers phénomènes sonores, ne nous donnait point la faculté de remplacer les observations immédiates, ordinairement impossibles ou trop imparfaites, par l'examen équivalent des cas plus favorables assujettis à la même loi. On conçoit, par exemple, que les plus rapides vibrations d'une corde très courte aient pu néanmoins être exactement comptées, quand l'analyse du problème des cordes vibrantes a fait connaître que, tout étant d'ailleurs rigoureusement égal, le nombre des oscillations est inversement proportionnel à la longueur de la corde, puisque cette loi permet dès lors de se borner à l'observation effective de vibrations très lentes. Il en est de même en beaucoup d'autres occasions où la substitution est plus indirecte.
Toutefois, les physiciens ont, ce me semble, trop compté jusqu'ici sur le secours de l'analyse mathématique, si fréquemment inefficace; et l'on doit regretter, pour les progrès réels de l'acoustique, qu'ils ne se soient pas occupés davantage de perfectionner directement leur système général d'expérimentation, encore essentiellement dans l'enfance. Quelles que soient les difficultés caractéristiques d'un tel ordre d'observations, tout esprit impartial reconnaîtra, sans doute, aujourd'hui que les modes actuels d'exploration sont presque toujours fort inférieurs à ce que permettrait effectivement la nature des phénomènes. L'acoustique ne paraît point au niveau des autres parties de la physique, quand on l'envisage relativement à l'invention et à l'emploi des moyens artificiels d'observation: on y remarque peu de ces ingénieuses créations de l'esprit expérimental, si multipliées et si importantes en thermologie, en optique, et en électrologie: les légers chevalets de Sauveur, et le sable fin de M. Chladni, soutiendraient mal une telle concurrence, quelque précieux que soit d'ailleurs leur emploi pour distinguer commodément les points qui participent le moins au mouvement vibratoire. Je ne doute pas que cette stérilité relative de l'art des expériences ne doive être attribuée, en partie, à l'opinion exagérée que se sont formée les physiciens du rôle de l'analyse mathématique dans le développement de l'acoustique, et qui leur a fait négliger à cet égard les ressources de l'expérimentation directe. Depuis les expériences vraiment fondamentales de Sauveur, on ne retrouve, en acoustique, après plus d'un siècle, d'autre suite importante d'observations que celles de notre illustre contemporain M. Chladni, complétées et perfectionnées par les judicieux travaux de M. Savart: tout l'intervalle est rempli par des recherches essentiellement mathématiques. Et, néanmoins, quelle que soit ici l'indispensable nécessité de ce puissant auxiliaire, comme j'ai essayé de le faire sentir ci-dessus, nous avons reconnu combien il serait, par lui-même, radicalement insuffisant, à cause des difficultés capitales inséparables d'une telle analyse, d'après laquelle on n'a pas même pu jusqu'à présent expliquer, d'une manière pleinement satisfaisante, les expériences de Sauveur, et, à plus forte raison, celles de M. Chladni. Sans renoncer au perfectionnement si désirable de la théorie mathématique des mouvemens vibratoires, il importe donc extrêmement que les physiciens proprement dits suivent désormais, en acoustique, une marche moins passive, en s'attachant avec plus de force et de persévérance à y développer convenablement le génie expérimental. L'indifférence qui pourrait en résulter quant à ces brillans exercices analytiques, où l'on ne trouve, sous le point de vue physique, que d'insignifiantes modifications des recherches antérieures, serait loin, sans doute, d'être aujourd'hui un inconvénient pour la science réelle. J'ai déjà indiqué, dans la vingt-neuvième leçon, des remarques analogues au sujet des parties les plus difficiles de la barologie: mais elles ont ici une importance très supérieure.
Après cet examen sommaire de la nature générale des études acoustiques et des principaux moyens d'investigation qui leur sont propres, il nous reste à considérer directement, par un aperçu non moins rapide, l'ensemble des parties dont se compose aujourd'hui cette branche fondamentale de la physique.
Nos connaissances à l'égard des lois des vibrations sonores se rapportent à ces trois points de vue élémentaires: le mode de propagation des sons; leur intensité plus ou moins grande, et, enfin, leur ton musical. L'acoustique actuelle, peu avancée sous le second rapport, présente sous les deux autres un aspect beaucoup plus satisfaisant. Il existe naturellement, à la vérité, une quatrième considération fondamentale, dont l'analyse scientifique serait d'un haut intérêt, celle du timbre, c'est-à-dire, du mode particulier de vibration propre à chaque corps et à chaque appareil sonore. Sans que nous sachions encore en quoi consiste réellement cette propriété, nous lui reconnaissons évidemment une telle fixité et une si grande importance que nous l'employons habituellement, soit dans la vie commune, soit même en histoire naturelle, comme tout-à-fait caractéristique. Toutefois, la physique générale n'a point à s'enquérir de ce qui peut constituer le timbre particulier à chacune des diverses substances, comme les pierres, les bois, les métaux, les tissus organisés, etc.; ces distinctions appartiennent proprement à la physique concrète, en traitant de l'histoire des différens corps: il est même évident que, sous ce rapport, comme en tout ce qui concerne les qualités primordiales des êtres naturels, certains phénomènes ne peuvent qu'être observés, et ne comportent aucune explication. Mais la manière dont le timbre propre à chaque substance peut être modifié, soit par la disposition de l'appareil sonore, soit par les pressions qu'il éprouve, ou par plusieurs autres circonstances générales, rentre pleinement dans le domaine rationnel de l'acoustique, qui doit donc être regardée aujourd'hui comme présentant, sous ce rapport essentiel, une véritable et grave lacune.