Que montre en somme l'expérience de Michelson? Qu'un rayon lumineux se propage à la surface de la terre de l'Ouest à l'Est exactement avec la même vitesse que de l'Est à l'Ouest. Imaginons au milieu d'une plaine deux canons identiques tirant, au même instant, par temps calme et sans vent, à la même vitesse initiale, deux projectiles semblables, l'un vers l'Ouest, l'autre vers l'Est. Il est clair que les deux projectiles mettront le même temps pour franchir des espaces égaux, l'un vers l'Ouest, l'autre vers l'Est. Les rayons lumineux que nous pouvons produire sur la Terre se comportent à cet égard, dans leur propagation, exactement comme ces obus. Il n'y aurait donc rien d'étonnant au résultat de l'expérience de Michelson si nous ne connaissions, des rayons lumineux, que ce que nous enseigne cette expérience.
Mais poursuivons notre comparaison. Considérons l'obus tiré par un de ces canons, et supposons qu'il tombe sur un blindage, sur une cible, en un certain point du champ de tir, et qu'en parvenant à ce point la vitesse restante de l'obus soit par exemple 50 mètres par seconde. Supposons cette cible montée sur un tracteur automobile. Si celui-ci est arrêté, la vitesse de l'obus par rapport à la cible sera, nous venons de le dire, de 50 mètres par seconde au point d'impact. Mais je suppose que le tracteur et la cible qu'il porte soient lancés, par exemple, à la vitesse de 10 mètres à la seconde (cela fait du 36 kilomètres à l'heure) dans la direction du canon, de telle sorte que la cible passe à sa position précédente exactement à l'instant où l'obus lui arrive. Il est clair que la vitesse de l'obus par rapport à la cible au moment où il l'atteint, ne sera plus 50 mètres mais 50 + 10 = 60 mètres par seconde. Il est évident au contraire que cette vitesse ne serait plus, toutes choses égales d'ailleurs, que 50 − 10 = 40 mètres par seconde, si, au lieu d'être lancée vers le canon, la cible était lancée en sens inverse. Si la vitesse de la cible dans ce dernier cas était égale à celle de l'obus, il est clair que celui-ci ne la toucherait plus qu'avec une vitesse nulle.
Tout cela va de soi-même, saute aux yeux. C'est pour cela que dans les music-halls les jongleurs peuvent recevoir sur une assiette, sans les casser, des œufs crus tombant de très haut: il leur suffit de donner à l'assiette, au moment du contact, une légère vitesse descendante qui amoindrit d'autant la vitesse du choc. C'est pour cela aussi, que les boxeurs habiles savent, par un léger mouvement, fuir devant le coup de poing, ce qui diminue sa vitesse efficace, tandis qu'au contraire, s'ils vont à sa rencontre, le coup est bien plus dur.
Si les rayons lumineux se comportaient en tout,—comme ils font dans l'expérience de Michelson—de même que nos projectiles, qu'arriverait-il? Lorsqu'on va très vite à la rencontre d'un rayon lumineux, on devrait trouver que ce rayon a, par rapport à l'observateur, une vitesse accrue, et qu'il a au contraire une vitesse diminuée lorsque l'observateur fuit devant lui. S'il en était ainsi, tout serait simple; les lois de l'optique seraient les mêmes que celles de la mécanique, aucune contradiction entre elles n'aurait jeté l'émoi dans l'armée paisible des physiciens, et Einstein aurait dû employer ailleurs les ressources de son génie.
Malheureusement,—ou peut-être heureusement, car, après tout, l'imprévu et le mystère seuls donnent du charme à la marche de ce monde,—il n'en est rien.
Les observations physiques, comme les astronomiques, montrent qu'en toutes circonstances, qu'on coure très vite au-devant de la lumière ou qu'on fuie devant elle, toujours elle a, par rapport à l'observateur, exactement la même vitesse. Il y a, en particulier, dans le ciel des étoiles qui s'éloignent ou se rapprochent de nous, c'est-à-dire dont nous nous éloignons ou nous rapprochons avec des vitesses de plusieurs dizaines et même de centaines de kilomètres par seconde. Eh bien! l'astronome de Sitter a montré que la vitesse de la lumière qui nous en arrive est pour nous, et toujours, exactement la même.
Ainsi, on n'a jamais pu jusqu'ici, par aucun artifice, par aucun mouvement, ajouter ou retrancher quelque chose à la vitesse avec laquelle nous parvient un rayon lumineux. L'observateur constate que la propagation de la lumière est, par rapport à lui, toujours identique, que cette lumière provienne d'une source qui s'éloigne ou qui se rapproche très vite, qu'il se précipite à sa rencontre ou en sens contraire. L'observateur peut toujours augmenter ou diminuer la vitesse par rapport à lui d'un obus, d'une onde sonore, d'un mobile quelconque, en s'élançant vers ce mobile ou en fuyant devant lui. Quand le mobile est un rayon lumineux, on ne peut rien faire de pareil.
Ainsi, la vitesse d'un véhicule ne peut en aucun cas s'ajouter à celle de la lumière qu'il reçoit ou qu'il émet, ni s'en retrancher.
Cette vitesse-limite de près de 300 000 kilomètres par seconde, qu'on observe toujours pour la lumière, est, à divers égards, analogue à la température de 273° au-dessous de zéro qu'on appelle le «zéro absolu» et qui est elle aussi, dans la nature, une limite infranchissable.
Tout cela prouve que les lois qui règlent les phénomènes optiques ne sont pas les mêmes que les lois classiques des phénomènes mécaniques. C'est à concilier, à réconcilier ces lois apparemment contradictoires que s'est attaché Lorentz, après Fitzgerald, par l'hypothèse étrange de la contraction.