Avec un peu d'attention, tout le monde comprendra cette démonstration dont la simplicité élémentaire n'a point été obtenue sans peine, mais qui se ramène en fait à la démonstration mathématique d'Einstein et à sa conception de la simultanéité.
Il en résulte que le wagon ou, d'une manière générale, un objet quelconque semble raccourci par sa vitesse et dans le sens de celle-ci par rapport à l'observateur. La même chose a lieu évidemment si c'est l'observateur qui se déplace devant l'objet, puisqu'on ne peut connaître que des vitesses relatives, en vertu du principe de relativité classique de Newton et de Galilée.
Sous cet aspect nouveau, la contraction de Lorentz-Fitzgerald devient intelligible ou du moins admissible. Cette contraction n'est plus, de la sorte, la cause du résultat négatif de l'expérience de Michelson; elle en est la conséquence. Tout s'en trouve clarifié, et on comprend maintenant qu'il y avait, dans la façon classique d'évaluer la dimension instantanée des objets, quelque chose d'incorrect.
Certes, le fait que des rayons lumineux, animés de vitesses différentes au départ de leurs sources, aient toujours en arrivant à notre œil des vitesses identiques et indiscernables, est étrange et heurte quelque peu nos vieilles habitudes d'esprit. Si j'ose employer une comparaison qui est seulement destinée à faire penser, mais nullement à expliquer, il y a là peut-être quelque chose d'analogue à ce qui se passe avec les bombes d'avions. Des bombes d'un modèle donné, qu'elles soient lâchées par l'avion d'une hauteur de 5 000 mètres ou d'une hauteur de 10 000, et qui, par conséquent, ont à 5 000 mètres du sol des vitesses de chute fort dissemblables, ont toujours en arrivant au sol la même vitesse restante. C'est l'effet modérateur, égalisateur, de la résistance de l'air, qui empêche la vitesse de s'accroître indéfiniment et la rend constante lorsqu'elle atteint une certaine valeur.
Faut-il admettre qu'autour de notre œil, autour des objets, il y a une sorte de champ de résistance qui impose à la lumière survenante une limite semblable? Qui le sait? D'ailleurs ces questions n'ont peut-être pas de sens pour un physicien. Celui-ci ne peut connaître et ne connaîtra le comportement de la lumière qu'à son départ de la source matérielle et à son arrivée à l'œil armé ou non d'instruments. Il ne peut savoir comment se comporte sa propagation dans l'espace intermédiaire dénué de matière.
Plus d'ailleurs nous approfondirons la nouvelle physique, plus nous constaterons qu'elle puise presque toute sa force dans son dédain systématique de ce qui n'est pas phénoménal, de ce qui n'est pas expérimentalement observable. C'est parce qu'elle est basée uniquement sur les faits (si contradictoires soient-ils) que notre démonstration du raccourcissement nécessaire des objets par leur vitesse relative à l'observateur, est forte.
Nous comprenons maintenant le sens profond de la contraction de Fitzgerald-Lorentz. Cette contraction apparente n'est nullement due au mouvement des objets par rapport à l'éther; elle est essentiellement l'effet des mouvements des objets et des observateurs les uns par rapport aux autres, des mouvements relatifs, au sens de la vieille mécanique.
Les plus grandes vitesses relatives auxquelles nous soyons habitués, dans la pratique de l'existence, sont inférieures à quelques kilomètres par seconde. La vitesse initiale de l'obus de la Bertha n'était que d'environ 1 300 mètres par seconde. Pour des mouvements aussi lents, la contraction relativiste est complètement négligeable. C'est pourquoi, ne l'ayant jamais constatée, la mécanique classique a considéré la forme et la dimension des objets rigides comme indépendantes des systèmes de référence.