Les dimensions d'un objet, sa forme, l'espace apparent occupé par lui dépendent de sa vitesse, c'est-à-dire du temps que met l'observateur à parcourir une certaine distance par rapport à cet objet. A cet égard déjà, l'espace dépend du temps; en outre, l'observateur mesure ce temps avec un chronomètre dont les secondes sont plus ou moins précipitées selon cette vitesse.
Donc définir l'espace sans le temps est impossible. C'est pourquoi on dit maintenant que le temps est la quatrième dimension de l'espace, et que l'espace où nous vivons a quatre dimensions.
Il est curieux que certains bons esprits, dans le passé, en avaient eu l'intuition plus ou moins obscure. C'est ainsi qu'en 1777 Diderot écrivait dans l'Encyclopédie à l'article «Dimension»:
«... J'ai dit plus haut qu'il était impossible de concevoir plus de trois dimensions. Un homme d'esprit de ma connaissance croit qu'on pourrait cependant regarder la durée comme une quatrième dimension et que le produit du temps par la solidité serait, en quelque manière, un produit de quatre dimensions. Cette idée peut être contestée, mais elle a, il me semble, quelque mérite, quand ce ne serait que celui de la nouveauté.»
C'est à coup sûr de l'algèbre qu'est née la première idée d'un espace à plus de trois dimensions. Puisqu'en effet les lignes ou espaces à une dimension sont représentés par des expressions algébriques du premier degré, les surfaces ou espaces à deux dimensions par des formules du second degré, les volumes ou espaces à trois dimensions par des expressions du troisième degré, il était naturel de se demander si les formules du quatrième degré et au delà ne sont pas, elles aussi, la représentation algébrique de quelque forme d'espace à quatre dimensions et davantage.
L'espace à quatre dimensions des relativistes n'est, au surplus, pas tout à fait ce qu'imaginait Diderot. Il n'est pas le produit du temps par l'étendue, car une diminution du temps n'y est pas compensée par un accroissement de l'espace, bien au contraire.
Considérons deux événements, par exemple les passages successifs, de notre rapide wagon-lit à deux stations. Pour un voyageur du wagon la distance des deux stations, mesurée par la longueur du chemin parcouru, est, comme nous l'avons montré, plus courte que pour un observateur immobile au bord de la voie. Le temps qui sépare les deux passages est également moindre pour le premier observateur. En effet le nombre des secondes et fractions de secondes écoulées au chronomètre dont il est muni, est plus petit pour lui, nous l'avons vu.
En un mot, la distance dans le temps et la distance dans l'espace diminuent toutes deux en même temps lorsque la vitesse de l'observateur augmente et augmentent toutes deux quand la vitesse de l'observateur diminue.
Ainsi la vitesse (et il ne s'agit jamais, rappelons-le, que de la vitesse relativement aux choses observées), opère en quelque sorte comme un double frein qui ralentit les durées et raccourcit les longueurs. Si l'on préfère une autre image, la vitesse nous fait voir à la fois les espaces et les temps plus obliquement, sous un angle de plus en plus aigu. L'espace et le temps ne sont donc que des effets changeants de perspective.
Pouvons-nous concevoir l'espace à quatre dimensions, c'est-à-dire pouvons-nous en imaginer une représentation sensible? Si non, cela ne prouvera rien contre la réalité de cet espace. Pendant des siècles on n'a pas conçu les ondes hertziennes et aujourd'hui encore elles ne nous sont pas directement sensibles. En existent-elles moins? En vérité, nous ne concevons déjà que difficilement l'espace à trois dimensions. Sans nos déplacements musculaires nous l'ignorerions. Un homme paralysé et borgne, c'est-à-dire n'ayant pas la sensation du relief que donne la vision binoculaire,—qui est, elle aussi, avant tout, un tâtonnement musculaire,—verrait de son œil unique et immobile tous les objets projetés dans un même plan, comme sur une toile de fond au théâtre. L'espace à trois dimensions lui serait inaccessible.