La vitesse de la lumière dans l'eau est d'environ 220 000 kilomètres par seconde. Il s'agit ici d'une propagation si rapide qu'il y a une grande différence entre la loi d'addition classique et celle de la mécanique einsteinienne. Or les résultats de l'expérience de Fizeau concordent rigoureusement avec la formule d'Einstein et sont en désaccord avec celle de la mécanique ancienne. De nombreux observateurs, et récemment le physicien hollandais Zeeman, ont repris avec une extrême précision l'expérience de Fizeau, et les résultats ont été identiques.

Lorsqu'au siècle passé Fizeau fit cette expérience, on avait certes essayé d'en interpréter les résultats numériques à la lumière des anciennes théories. Mais cela avait conduit à des hypothèses tout à fait invraisemblables. C'est ainsi que Fresnel, pour expliquer les résultats de Fizeau, avait été obligé d'admettre que l'éther est partiellement entraîné par l'eau dans son mouvement, mais que cet entraînement partiel varie avec la longueur des ondes lumineuses propagées, et n'est pas la même pour les rayons bleus et pour les rayons rouges! Conséquence choquante et bien difficile à admettre.

La nouvelle loi de composition des vitesses donnée par Einstein rend compte, au contraire, immédiatement, et avec une extrême exactitude, des résultats de Fizeau. Ceux-ci sont en contradiction avec la loi classique.

Les faits, arbitres et critères souverains, montrent ici que la mécanique nouvelle correspond à la réalité, l'ancienne non, du moins sous sa forme traditionnelle.

Et voilà qui déjà nous fait toucher du doigt la beauté, la vérité profonde (la vérité scientifique étant ce qui est vérifiable) de la doctrine einsteinienne. Voilà qui nous démontre dès maintenant en quoi, magnifiquement, une théorie scientifique, une théorie physique se distingue d'un système philosophique arbitraire et plus ou moins cohérent.

L'expérience, juge suprême, décide en faveur de la mécanique einsteinienne, contre la mécanique classique. Nous en verrons d'autres exemples. Nous n'en trouverons aucun qui prononce en sens contraire.

Mais voici bien autre chose. La nouvelle loi de composition des vitesses, et l'existence d'une vitesse-limite égale à celle de la lumière, peuvent s'exprimer dans un langage différent de celui que nous avons employé jusqu'ici. Nous n'avons encore parlé que de vitesses, de mouvements. Voyons comment les choses se présentent lorsque nous examinons en même temps les qualités particulières des objets qui se meuvent, des corps, de la matière.

Chacun sait que ce qui caractérise la matière, c'est ce qu'on appelle l'inertie. Si la matière est en repos, il faut une force pour la mettre en mouvement. Si elle est en mouvement, il faut une force pour l'arrêter. Il en faut une pour accélérer le mouvement. Il en faut une pour le dévier. Cette résistance que la matière oppose aux forces qui tendent à modifier son état de repos ou de mouvement, c'est ce qu'on appelle l'inertie. Les divers corps peuvent opposer à ces forces une résistance plus ou moins grande. Si une force est appliquée à un objet, elle lui imprimera une certaine accélération. Mais la même force appliquée à un autre objet lui imprimera en général une accélération différente. Un cheval de course déployant son effort maximum détalera plus vite s'il porte un minuscule jockey, que s'il porte un cavalier de cent kilos. Un cheval de trait démarrera plus rapidement si le chariot qu'il traîne est vide que s'il est chargé de marchandises. Vous pourrez mettre une charrette en mouvement avec le même effort qui n'ébranlerait pas un lourd camion.

Lorsqu'une locomotive traînant quelques wagons démarre brusquement, la vitesse imprimée au train au bout de la première seconde est (à une constante près) ce qu'on appelle son accélération. Si cette locomotive démarre dans les mêmes conditions avec un train beaucoup plus long, on remarque que l'accélération est plus petite. De là provient la notion, introduite dans la science par Newton, de la masse des corps qui en mesure l'inertie.