On sait que les corps électrisés agissent les uns sur les autres: ils s'attirent ou se repoussent. Nos électrons sont chargés d'électricité. Si donc on les place dans un champ électrique, entre deux plateaux réunis aux deux bornes d'une machine électrique ou d'une bobine d'induction, ils vont être soumis à une force qui les déviera de leur route. Les rayons cathodiques seront donc déviés par un champ électrique. Cette déviation dépendra de la vitesse des projectiles et elle dépendra aussi de leur masse, c'est-à-dire de la résistance d'inertie qu'elle oppose aux causes qui tendent à la dévier.

Ce n'est pas tout. Les charges électriques portées par ces projectiles sont en mouvement, et même en mouvement rapide. De l'électricité en mouvement, c'est un courant électrique; or nous savons que les courants sont déviés par les aimants, par les champs magnétiques. Les rayons cathodiques seront donc déviés par l'aimant. Cette déviation, comme la première, dépendra de la vitesse et de la masse du projectile. Seulement, elle n'en dépendra pas de la même manière. Toutes choses égales d'ailleurs, la déviation magnétique sera plus grande que la déviation électrique si la vitesse est grande. En effet, la déviation magnétique est due à l'action de l'aimant sur le courant; elle sera d'autant plus grande que le courant sera plus intense; et le courant sera d'autant plus intense que la vitesse sera plus grande, puisque c'est le mouvement du projectile qui produit le courant. Au contraire, la trajectoire de nos petits projectiles, sous l'influence de l'attraction électrique, sera d'autant moins déviée que le projectile sera plus rapide.

On conçoit donc qu'en soumettant un rayon cathodique à l'action d'un champ électrique, puis à celle d'un champ magnétique, on puisse, en comparant les deux déviations, mesurer à la fois la vitesse du projectile et sa masse (rapportée à la charge électrique connue de l'électron).

On trouve ainsi des vitesses énormes allant de plusieurs dizaines de kilomètres jusqu'à 150 000 kilomètres par seconde et davantage. Quant aux rayons Bêta du radium, ils sont encore plus rapides et atteignent jusqu'à des vitesses très voisines de celle de la lumière et supérieures à 290 000 kilomètres par seconde. Voilà bien les vitesses qu'il nous faut pour voir si, oui ou non, la masse augmente avec elles.

Cela posé, et pour comprendre parfaitement la marche des expériences, il nous reste à dire quelques mots de ce curieux phénomène d'inertie électrique qu'on appelle la self-induction. Quand on veut établir un courant électrique, on éprouve une certaine résistance initiale qui cesse dès que le courant est établi; si ensuite on veut rompre le courant, il tend à se maintenir et on a autant de mal à l'arrêter qu'à arrêter une voiture une fois lancée. L'expérience journalière peut le montrer. Quelquefois les trolleys d'un tramway quittent un instant le fil qui amène le courant; à ce moment, on voit jaillir des étincelles. Pourquoi? Il passait un courant qui allait du fil au trolley; si le trolley s'éloigne un instant du fil, laissant un intervalle d'air qui est un obstacle au passage de l'électricité, le courant ne s'arrête pas pour cela, parce qu'il est lancé pour ainsi dire; il franchit l'obstacle sous forme d'étincelle. Ce phénomène est ce qu'on appelle la self-induction.

La self-induction ou simplement la self, comme disent les ouvriers électriciens, est une véritable inertie. Le milieu ambiant oppose une résistance à la force qui tend à établir un courant électrique et à celle qui tend à faire cesser un courant préalablement établi, de même que la matière résiste à la force qui tend à la faire passer du repos au mouvement, ou au contraire du mouvement au repos. Il y a donc, à côté de l'inertie mécanique, une véritable inertie électrique.

Mais nos projectiles cathodiques, nos électrons sont chargés. Quand ils se mettent en mouvement, ils font naître un courant électrique; quand ils s'arrêtent, le courant cesse. A côté de l'inertie mécanique, ils doivent donc posséder également l'inertie électrique. Ils ont pour ainsi dire deux inerties, c'est-à-dire deux masses inertes, une masse réelle et mécanique, et une masse apparente due aux phénomènes de self-induction électro-magnétique. En étudiant les deux déviations, électrique et magnétique, des rayons Bêta du radium ou des rayons cathodiques, on peut déterminer quelle est, dans la masse totale de l'électron, la part de ces deux masses. En effet, la masse électro-magnétique due aux causes que nous venons d'expliquer varie avec la vitesse, suivant certaines lois que la théorie de l'électricité nous fait connaître. En observant la relation entre la masse totale et la vitesse, on peut donc voir quelle est la part de la masse véritable et invariable, et celle de la masse apparente d'origine électro-magnétique.

L'expérience a été réalisée et répétée par des physiciens très habiles. Le résultat est bien fait pour surprendre: la masse réelle est nulle, toute la masse de la particule est d'origine électro-magnétique. Voilà qui est de nature à modifier complètement nos idées sur l'essence de ce qu'on nomme matière. Mais ceci, est une autre histoire....

On s'est demandé alors,—et c'est là que nous voulions en venir après ces quelques détours qui auront débroussaillé le chemin,—si la relation entre la masse et la vitesse des projectiles cathodiques, était la même que celle où nous avait conduits le principe de relativité.