D'autre part dans la loi de Newton, qu'introduirons-nous comme distance de la Terre au Soleil? Sera-ce la distance relative à un observateur placé sur la Terre ou sur le Soleil, ou au contraire immobile au centre de la Voie Lactée et ne participant pas au mouvement de notre système à travers celle-ci? Ici encore on aura des valeurs différentes suivant les cas, puisque les distances spatiales varient, nous l'avons vu avec Einstein, selon la vitesse relative de l'observateur.
La loi de Newton, en dépit de sa forme si simple, si esthétique, est donc ambiguë et peu nette. Je sais bien que les différences dont nous venons de parler sont faibles; mais elles ne sont pas pour cela négligeables, le calcul le montre.
Sous sa forme classique, il est donc certain pour les einsteiniens et sans préjudice des considérations où nous allons entrer, que la loi de Newton est obscure et doit être modifiée et complétée.
Ces remarques préliminaires auront peut-être ceci d'utile, qu'elles nous achemineront vers l'état d'esprit un peu nécessaire aux iconoclastes... et dans la science les iconoclastes sont parfois les ouvriers du progrès. Les idoles auxquelles ces remarques nous habitueront à voir porter quelques coups injurieux sont la conception et la loi newtoniennes de la gravitation.
Laplace a écrit dans son exposition du système du monde: «Il est impossible de ne pas convenir que rien n'est mieux démontré dans la philosophie naturelle que le principe de la gravitation universelle en raison des masses et réciproque au carré des distances.»
Rien ne mesure aussi bien que cette phrase d'un savant illustre la grandeur du progrès accompli par Einstein lorsqu'il a, comme nous allons voir, perfectionné ce qu'on croyait le symbole même, l'exemple le plus achevé de la vérité scientifique: la loi célèbre de Newton.
La gravitation, la pesanteur a ceci de commun avec l'inertie des corps, qu'elle est un phénomène parfaitement général. Tous les objets matériels, tous les corps quel que soit leur état physique et chimique sont à la fois inertes (c'est-à-dire qu'ils résistent suivant leur masse aux forces tendant à les déplacer) et pesants, (c'est-à-dire qu'ils tombent lorsqu'ils sont librement abandonnés).
Mais il est une chose curieuse, que Newton avait déjà constatée sans en apercevoir la signification et qu'il considérait comme une simple et extraordinaire coïncidence: le nombre qui définit l'inertie d'un corps est le même qui définit son poids. Ce nombre c'est la masse.
Reprenons l'exemple qui m'a servi dans un chapitre précédent à propos de la mécanique d'Einstein. Si deux trains tirés par deux locomotives identiques démarrent dans les mêmes conditions et que la vitesse communiquée au premier train au bout d'une seconde soit double de celle du second, on en déduira que l'inertie, la masse inerte du second train (abstraction faite des frottements des rails) est deux fois plus grande que celle du premier. Or si nous mettons ensuite nos deux trains sur la bascule, nous constatons que le poids du second est, de même, deux fois plus grand que celui du premier.