Einstein répondra que c'est déjà quelque chose de fournir un crible au travers duquel doivent passer, un critère auquel doivent satisfaire pour être reconnues exactes, les lois et formules qui servent à représenter les phénomènes empiriquement observés. Il est vrai. La loi de Newton sous sa forme classique ne satisfaisait pas à ce critère. Cela prouve qu'il n'était pas si évident que cela. Il arrive qu'une vérité méconnue hier devienne aujourd'hui un truisme. Tant mieux.
En exprimant une des conditions auxquelles doivent satisfaire les lois naturelles, la théorie de la relativité acquiert pour le moins ce que dans le jargon philosophique on appelle une valeur «heuristique.»
Il n'en est pas moins certain, comme M. Painlevé le montre avec une vigueur et une clarté parfaites, que le principe de la relativité généralisée ainsi considéré, ne saurait suffire à fournir des lois précises. Il serait parfaitement conciliable avec une loi de gravitation où l'attraction serait en raison inverse, non pas du carré, mais de la dix-septième, de la centième puissance, d'une puissance quelconque de la distance.
Pour extraire du principe de la relativité généralisée la loi exacte de l'attraction, il faut y surajouter l'interprétation einsteinienne du résultat de Michelson à savoir: que par rapport à un observateur quelconque la lumière se propage localement avec la même vitesse en tous sens. Il faut surajouter encore diverses hypothèses que M. Painlevé considère comme newtoniennes.
A son exposé critique de la relativité présenté avec éclat devant l'Académie des Sciences, M. Paul Painlevé a ajouté une contribution mathématique précieuse dont le principal résultat est le suivant: on peut trouver d'autres lois de la gravitation que celle indiquée par Einstein et qui toutes correspondent aux conditions einsteiniennes.
Le savant géomètre français en a indiqué plusieurs, une en particulier dont la formule nettement différente de celle d'Einstein, rend compte comme celle-ci et avec précision du mouvement des planètes, du déplacement du périhélie de Mercure, et de la déviation des rayons lumineux près du Soleil.
Cette formule nouvelle correspond à un espace qui est indépendant du temps, et elle n'entraîne pas la conséquence qui dérive de la formule d'Einstein au sujet du déplacement vers le rouge de toutes les raies spectrales du Soleil.
La vérification ou la non vérification de cette conséquence de l'équation d'Einstein dont nous avons dans un chapitre précédent indiqué les difficultés—peut-être insurmontables—en acquiert une importance nouvelle.
Chose remarquable, plusieurs des formules de gravitation données par M. Painlevé conduisent, contrairement à celle d'Einstein, à la conclusion que l'espace reste euclidien lorsqu'on s'approche du Soleil, en ce sens que les mètres ne doivent pas nécessairement se raccourcir.
Tout cela brille à l'horizon de l'astronomie comme l'aurore d'une époque nouvelle où des observations d'un raffinement insoupçonné fourniront les critères délicats, capables d'imposer une forme plus précise, plus exempte d'ambiguïté à la loi de la gravitation. Il y a encore de beaux jours... ou plutôt de belles nuits pour les astronomes.