Chevalier de l'Étoile Polaire de Suède, nommé le 12 avril 1884.


SECTION II.

ANALYSE MATHÉMATIQUE.

Rapport de M. CHARLES HERMITE sur le Mémoire présenté par M. PAUL APPELL au Concours ouvert par S. M. le Roi de Suède et de Norvège OSCAR II, et récompensé d'une Médaille d'Or le 21 janvier 1889.

Les expressions des fonctions elliptiques par des séries simples de sinus et de cosinus, telles que les donne la formule de Fourier, ont, à bien des points de vue, une grande importance en Analyse. Elles ont été employées avec succès et jouent un rôle important dans beaucoup d'applications du calcul à la Physique et à l'Astronomie. Elles ont conduit Jacobi aux formules si remarquables du § 40 des Fundamenta, où le grand géomètre, allant au delà des propositions connues de l'Arithmétique, obtient le nombre de décompositions d'un entier quelconque en 2, 4, 6 et 8 carrés, exprimé au moyen des diviseurs de ce nombre. D'autres résultats, d'une nature plus cachée, sur le nombre des classes de formes quadratiques de déterminants négatifs, devaient encore découler de la même source analytique et mettre dans tout son jour l'étroite correspondance des identités de la théorie des fonctions elliptiques avec la théorie des nombres. Nous les rappelons succinctement pour faire comprendre quelles espérances on avait dû concevoir de la découverte mémorable de Göpel et Rosenhain, lorsqu'on eut, sous une forme entièrement semblable à celle des fonctions elliptiques, les fonctions quadruplement périodiques de deux variables, inverses des intégrales hyperelliptiques de première classe. Assurément il était possible de joindre aux expressions de ces nouvelles transcendantes, par des quotients de fonctions Θ, des développements en séries simples de sinus et de cosinus; mais la détermination effective des coefficients présente les plus grandes difficultés et n'a pu jusqu'à présent être abordée. Elle est le principal objet du Mémoire dont nous allons analyser les méthodes et les résultats.

I. La solution donnée par Jacobi du problème de la rotation d'un corps solide autour d'un point fixe, lorsqu'il n'y a pas de forces accélératrices, a été l'origine d'une notion analytique importante. Les expressions de l'illustre auteur présentent, en effet, dans le cas le plus simple, l'exemple de fonctions qui se reproduisent multipliées par des constantes lorsqu'on augmente la variable de l'une ou l'autre des périodes. On a reconnu qu'elles constituent un nouveau genre de fonctions, plus générales que les fonctions doublement périodiques, dont le rôle comme élément analytique propre se montre dans beaucoup de questions importantes. Elles s'offrent, en particulier, dans la rotation d'un corps grave de révolution suspendu par un point de son axe, dans la recherche de la figure de l'élastique gauche, dans le mouvement d'un corps solide dans un liquide indéfini, lorsqu'il n'y a pas de forces accélératrices, etc. Enfin elles donnent une méthode régulière, d'une application facile, pour effectuer l'intégration des équations différentielles linéaires d'ordre quelconque, à coefficients doublement périodiques, dans tous les cas où la solution est une fonction uniforme. Sous un autre point de vue, ces transcendantes peuvent encore être considérées comme provenant de l'intégrale elliptique la plus générale qui aura été mise en exponentielle, en y remplaçant la variable par un sinus d'amplitude. On peut aussi ne pas faire ce changement et conserver l'intégrale qui, suivant le contour décrit par la variable, est susceptible d'une infinité de déterminations. Ces valeurs multiples s'obtenant par l'addition de constantes, les expressions dont nous parlons auront la propriété de se reproduire, multipliées par des facteurs constants, lorsqu'on fait décrire certains chemins à la variable. Qu'au lieu de considérer la variable sur un plan unique on recoure à la conception de Riemann, de manière à remplacer, par une fonction à sens unique, affectée de coupures, une expression à déterminations multiples, on parvient à une quantité dont les valeurs, lorsqu'on passe d'un bord à l'autre de la coupure, se reproduisent multipliées par une constante. Nous nous trouvons ainsi amenés à l'idée fondamentale de l'auteur, à la notion analytique des nouvelles transcendantes, auxquelles il donne la dénomination de fonctions à multiplicateurs et dont il établit les propriétés; voici succinctement les résultats auxquels il est parvenu.

II. Son point de départ est dans la considération d'une équation algébrique de genre p, et de la surface correspondante de Riemann, rendue simplement connexe au moyen de coupures; ce sont les éléments qui lui permettent de définir d'une manière complète et précise les fonctions à multiplicateurs, d'après les conditions suivantes. Elles seront uniformes sur la surface, elles ne présenteront aucune autre singularité que des pôles, et elles prendront aux deux bords infiniment voisins d'une coupure des valeurs qui ne diffèrent que par des multiplicateurs constants. Ceci posé, voici un premier résultat d'une grande importance: toutes les fonctions qui satisfont aux conditions posées, leurs multiplicateurs étant des constantes données d'avance, peuvent s'exprimer au moyen des intégrales normales de troisième espèce qui sont attachées à l'équation algébrique. Viennent ensuite plusieurs théorèmes; le suivant qui est une généralisation de la proposition célèbre d'Abel, sur les intégrales de différentielles algébriques, mérite une attention particulière. Il consiste en ce que la somme des valeurs que prend une intégrale abélienne de première espèce, aux zéros d'une fonction à multiplicateurs, est égale à la somme des valeurs qui correspondent aux infinis de la même fonction, augmentée d'une constante dépendant uniquement des multiplicateurs. Après avoir déduit de là d'importantes conséquences sur le nombre des constantes arbitraires d'une fonction qui a des multiplicateurs et des pôles donnés, l'auteur démontre qu'il existe en général p-1 relations entre les pôles et les résidus d'une fonction à multiplicateurs, et p dans un cas spécial, comprenant en particulier celui des fonctions algébriques. Ce cas spécial intéressant tient à l'existence d'une fonction sans zéros, ni infinis, et qui admet les multiplicateurs donnés.

III. Les intégrales de fonctions à multiplicateurs font ensuite le sujet d'une étude approfondie. L'auteur obtient, à leur égard, un ensemble de propositions qui correspondent exactement aux théorèmes célèbres de Riemann sur les intégrales abéliennes. Nous indiquerons, comme exemples, leur classification en intégrales de première espèce qui sont toujours finies, en intégrales de deuxième espèce n'ayant que des pôles, et en intégrales de troisième espèce où s'offrent des infinis logarithmiques. Nous citerons encore cette importante proposition, qu'en général il existe p-1 intégrales de première espèce, linéairement indépendantes, et p dans le cas particulier dont il a été question précédemment. Les modules de périodicité de ces intégrales, le long des coupures, sont liés aux multiplicateurs par des relations qui deviennent identiques lorsque les multiplicateurs se réduisent à l'unité et que les intégrales deviennent abéliennes. Entre les modules de périodicité de deux intégrales de première espèce, à multiplicateurs inverses, existe une équation qui coïncide, dans le cas particulier des multiplicateurs égaux à l'unité, avec la relation d'une importance capitale découverte par Riemann, entre les modules de périodicité de deux intégrales abéliennes de première espèce. Enfin l'auteur forme les intégrales normales de fonctions à multiplicateurs de deuxième et de troisième espèce; il établit des relations entre les modules de périodicité de ces intégrales et leurs multiplicateurs, puis d'autres entre ces modules et ceux d'une intégrale de première espèce aux multiplicateurs inverses. L'ensemble de ces résultats rend manifeste l'analogie de la nouvelle théorie avec celle des intégrales abéliennes; la différence de nature analytique entre les deux genres de quantités apparaît toutefois dans cette circonstance, qu'il existe une intégrale de troisième espèce, avec un seul infini logarithmique, tandis qu'une intégrale abélienne de troisième espèce possède au moins deux infinis de cette nature. En dernier lieu, nous signalerons, dans la théorie des intégrales de deuxième espèce, ce théorème d'un grand intérêt, que toute fonction à multiplicateurs s'exprime par une somme d'intégrales de seconde espèce, ayant les mêmes multiplicateurs et devenant chacune infinie en un seul point. C'est, comme on le voit, la généralisation de la belle formule de Riemann-Roch, qui représente une fonction algébrique quelconque par une somme d'intégrales abéliennes de deuxième espèce.

IV. Nous venons d'indiquer rapidement les points les plus essentiels de la théorie des fonctions à multiplicateurs. Nous avons montré qu'elle a pour première origine les fonctions algébriques, leurs propriétés et celles de leurs intégrales, telles que Riemann les a fait connaître; nous avons montré qu'elles constituent par l'ensemble de leurs caractères de nouveaux éléments analytiques où l'on retrouve, dans un sens beaucoup plus général, toutes les propriétés des fonctions doublement périodiques de deuxième espèce. Il nous faut maintenant revenir à la question principale que l'auteur a eue en vue en entreprenant ces belles et profondes recherches où il a montré le plus remarquable talent d'invention. Son but était d'obtenir les intégrales définies réelles qui représentent les coefficients des développements, par la formule de Fourier, des fonctions elliptiques et des fonctions abéliennes de deux variables à quatre paires de périodes simultanées. Un changement de variables le conduit d'abord à des fonctions à multiplicateurs, et, pour le cas des sinus d'amplitude qu'il traite en premier lieu, ses principes généraux lui permettent d'obtenir les coefficients du développement avec autant de simplicité que d'élégance. En appliquant ensuite la même méthode aux transcendantes de Göpel et de Rosenhain, il trouve les coefficients sous la forme d'une fonction rationnelle des constantes p, q, r qui figurent dans les fonctions Θ à deux variables, multipliée par une intégrale définie où entrent deux entiers indéterminés. C'est, pour la théorie des fonctions abéliennes, un résultat du plus haut intérêt: il donne la solution d'une question restée jusqu'ici inabordable, sous une forme qui permettra d'en poursuivre les conséquences; il ouvre la voie pour l'étude approfondie des développements par la formule de Fourier, des fonctions abéliennes, et obtenir pour ces fonctions des développements procédant suivant les puissances des trois quantités p, q, r. On peut donc attendre de voir ainsi se combler une grande lacune dans la théorie de ces transcendantes; on peut donc espérer de voir se rétablir, autant que le comporte la nature des choses, l'analogie avec les fonctions elliptiques, dans ce point d'une importance capitale où elles se lient aux propriétés des nombres. Pressé par la date fixée pour le terme du concours, l'auteur a dû ajourner ces recherches qui auraient pu devenir le couronnement de son beau et savant Mémoire. Mais il a grandement accompli sa tâche en posant les fondements d'une théorie qui ajoute au domaine de l'Analyse un nouveau genre de fonctions, dont il a encore indiqué une autre application importante à l'intégration des équations linéaires d'ordre quelconque à coefficients algébriques.