M. P. Appell a étendu, en 1880 et en 1881, aux équations différentielles linéaires et homogènes, les théorèmes relatifs aux fonctions symétriques des racines d'une équation algébrique et à la transformation des équations algébriques. De 1882 à 1887, il a intégré une classe particulière d'équations différentielles linéaires binomes à coefficients algébriques et d'équations différentielles linéaires dont l'intégrale générale est méromorphe sur une surface de Riemann et dont les cycles sont permutables. Puis, dans son Mémoire couronné en 1889, il a classé les équations différentielles linéaires à coefficients algébriques, dans le cas où l'intégrale générale n'admet, sur une surface de Riemann, d'autres singularités que des pôles et des points critiques logarithmiques, en généralisant la classification des intégrales abéliennes. Aux équations différentielles algébriques et homogènes par rapport à la fonction inconnue et à ses dérivées, mais non linéaires, il a montré que l'on peut étendre la théorie des invariants, d'abord en 1887, quand ces équations sont du premier ordre et définissent la dérivée comme fonction rationnelle de l'inconnue, puis, en 1889, quand elles sont du second ordre, homogènes et du second degré par rapport à la fonction inconnue et à ses dérivées première et seconde. Dans le domaine des équations différentielles aux dérivées partielles, il importe de citer l'extension, publiée en 1880, d'un théorème de Fuchs aux équations simultanées généralisant celles de la théorie des fonctions hypergéométriques ainsi que l'intégration, en 1882, d'une équation dont un cas particulier avait été rencontré par Euler dans ses recherches relatives à la propagation du son.

Le principal travail de M. P. Appell en Géométrie infinitésimale est une étude approfondie du problème des déblais et des remblais, traité d'abord par Monge, proposé par l'Académie des Sciences comme question de Concours pour le prix Bordin. Le Mémoire que M. P. Appell présenta fut couronné le 21 décembre 1885, conformément aux conclusions d'un beau Rapport de M. Gaston Darboux, qui s'exprime ainsi au cours d'une analyse remplie de précieux renseignements historiques: «C'est un travail de haute valeur où sont employés, alternativement et avec le plus grand succès, les ressources de la Géométrie et les méthodes de l'Analyse moderne».

M. P. Appell fut amené par ses fonctions à faire une étude approfondie de la Mécanique rationnelle. Un théorème curieux, publié en décembre 1878 et relatif à l'interprétation des valeurs imaginaires du temps, lui permit de déduire d'une même intégration les deux mouvements que prend un système sous l'action de deux champs de force, égaux et de sens opposés. Dans une Note et un Mémoire, parus en 1886 et en 1888, il a ramené l'intégration des équations du mouvement d'un fil flexible et inextensible dans un plan à l'intégration d'une équation aux dérivées partielles du quatrième ordre. Le 4 février 1889, M. P. Appell a, le premier, proposé d'employer en Mécanique la méthode, si féconde en Géométrie, de transformation des figures par projection centrale. Ses travaux poursuivis en 1890, 1892 et 1895 ont suggéré les recherches de plusieurs géomètres, notamment de MM. E. Goursat, Paul Painlevé, P. Staeckel et S. Dautheville. Enfin, en 1890 et en 1892, il a établi, dans la théorie de la chaleur, des propositions ayant pour but principal la recherche, quand elle est possible, des états antérieurs.


Toutes ces remarquables recherches attirèrent l'attention de l'Académie des Sciences; M. P. Appell, après avoir obtenu le prix Bordin en 1885 pour son Mémoire sur les déblais et les remblais, les prix Poncelet en 1887 et Petit d'Ormoy en 1889 pour l'ensemble de ses travaux, fut élu, le 7 novembre 1892, membre de ce corps savant, dans la Section de Géométrie. Pendant les années qui suivirent cette élection, il continua ses recherches en Analyse pure et en Analyse appliquée à la Mécanique.


On sait quelle est l'importance du problème de l'inversion des intégrales simples: en 1897, M. P. Appell a montré comment on peut définir le problème de l'inversion des intégrales doubles et multiples, par la considération d'un champ d'intégration dépendant de plusieurs paramètres variables.

Les équations de Lagrange ne sont applicables qu'aux systèmes, dits holonomes, dont les liaisons s'expriment en termes finis. M. P. Appell a donné, le 28 août 1899, une autre forme générale des équations de la Dynamique s'appliquant à tous les systèmes sans frottement, holonomes ou non, et reposant sur l'emploi de l'énergie d'accélération à la place de l'énergie de vitesse. Les études, publiées en 1903 et en 1909, sur les fonctions ayant des significations indépendantes du choix des axes, l'ont conduit à d'importants résultats relatifs aux fonctions et aux vecteurs de points en Hydrodynamique et au problème du mouvement d'un fil. Au Congrès des Sociétés savantes, en 1910, il a donné une équation fonctionnelle pour l'équilibre d'une masse liquide en rotation et soumise à l'attraction newtonienne. La question du problème de l'extinction du frottement, dans le cas d'un système matériel présentant certains caractères réalisés dans la plupart des systèmes usuels, a été signalée par M. P. Appell dans un Discours prononcé, le 4 août 1905, au Congrès tenu à Cherbourg par l'Association Française pour l'Avancement des Sciences; puis résolue d'une manière précise dans deux Notes, parues en 1907, qui peuvent être regardées comme le point de départ d'intéressantes recherches se rapportant à la Mécanique et à la Physique. Il convient de signaler encore les extensions, faites en 1892 et en 1893, des équations de Lagrange au cas où il y a frottement et à la théorie du choc et des percussions; l'intégration, faite en 1899, des équations du mouvement d'un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; les recherches, publiées en 1899 et en 1904, sur l'équilibre d'un flotteur avec un chargement liquide et sur la théorie d'un appareil à déterminer la position et la masse des balourds. Tous ces travaux de M. P. Appell ont trouvé leur place dans son Traité de Mécanique rationnelle, dont la publication a été commencée en 1893: les diverses éditions des trois volumes de cet Ouvrage, qui est très apprécié, sont analysées au début de la IVe Section de cet Opuscule.


Le 1er avril 1903, M. P. Appell fut élu Doyen de la Faculté des Sciences de l'Université de Paris et, en 1904, membre du Conseil supérieur de l'Instruction publique; de plus, il fait partie de la section permanente de ce Conseil. Ces fonctions absorbantes l'ont contraint à consacrer la plus grande partie de son activité à l'étude des questions relatives à l'organisation de l'Enseignement supérieur en France. Ses idées sur l'éducation et les études sont exposées dans plusieurs Discours et Articles, et, plus particulièrement, d'abord dans la Conférence sur l'Enseignement supérieur des Sciences, qu'il a faite, en février 1904, à l'École des hautes études sociales et qui a été suivie d'une intéressante discussion résumée par M. Clément Colson; ensuite dans un long Rapport que la Commission interministérielle des Grandes Écoles approuva en juillet 1904 et dont les diverses résolutions ont été appliquées dans les Programmes de l'Enseignement secondaire. En outre, depuis 1906, M. P. Appell s'est efforcé d'établir des relations cordiales et suivies entre les milieux savants Nationaux et Américains, en sa qualité de Président du Conseil de direction du Groupement des Universités et Grandes Écoles de France pour les rapports avec l'Amérique latine.