Aucune de ces machines ne l'ayant satisfait, il entreprit d'en construire une lui-même. Il essaya un nombre de combinaisons infini, garda pendant plusieurs années à son service des mécaniciens qui travaillaient uniquement à l'exécution de ses plans, sans cesse changés ou modifiés, et ne s'arrêta, en fin de compte, qu'aux deux machines compliquées, incomplètes, inutilisables, que nous avons mentionnées.
Vers le même temps, Matthieu Hann, pasteur de Kornswestheim, près de Ludwigsbourg (Wurtemberg), (Page ) après de longues années de travail et de grandes dépenses, montra une machine arithmétique avec laquelle il exécutait des opérations fort difficiles. Cette machine commença par exciter un étonnement général; mais bientôt on reconnut que les calculs exécutés avec cet instrument étaient très-limités, très-inexacts; l'invention de Hann fut abandonnée. On n'en connaît pas la structure intérieure, le Mercure de Wieland n'en ayant décrit que la forme extérieure.
La machine que construisit, bientôt après, le capitaine du génie Müller était plus exacte que celle de Hann, mais était aussi incomplète. L'auteur donne la description de la forme extérieure de sa machine et les indications sur la manière de s'en servir, dans sa brochure intitulée: Description d'une nouvelle machine.
La machine arithmétique dite de Diderot étant longuement décrite dans la grande Encyclopédie, nous n'en dirons rien. Nous nous contenterons de rappeler que presque tous les savants de l'Encyclopédie sont aujourd'hui réputés avoir contribué de toute leur science, de tout leur génie, à la création de cette lourde machine, dont la mémoire de Diderot a seule longtemps supporté la responsabilité.
L'instrument inventé par Prahl et connu sous le nom d'Arithmetica portabilis, n'est qu'une sorte de reproduction de la Mensula pythagorica de Michaël Poetius. Il n'en diffère qu'en ceci: les cercles mobiles sont beaucoup plus grands et portent des chiffres qui vont de 1 à 100, de sorte qu'au moyen de cette machine (Page ) on peut additionner et soustraire jusqu'au nombre 100.
La machine à calculer dont Gruson donne la description dans une brochure qu'il publia en 1790, à Hagdebourg, n'est également qu'une imitation de la Mensula pythagorica et consiste dans un disque de carton, avec index au milieu.
En 1797, Jordans publia à Stuttgart une brochure portant pour titre: Description de plusieurs machines à calcul, inventées par Jordans. Cette brochure ne fait guère que reproduire, sous des formes modifiées, le promptuarium de Néper.
En 1795, Leblond avait transporté sur un cadran les divisions logarithmiques de Günther; mais cette modification ne constitue pas une machine proprement dite.
Il faut en dire autant de l'arithmographe que Gottey construisit en 1810, qui n'est également qu'une forme nouvelle, la forme circulaire, donnée à l'instrument de Günther.
Il faut en dire autant des règles logarithmiques de Mountain et de celles de Makay; autant des règles de Scheflelt et de la double règle de Lambert; autant de la règle à coulisse de Lenoir, qui n'est que la reproduction de celle, non pas de Jones, qui n'était lui-même qu'un reproducteur, mais de Ch. Leadbetter.