Les rayons pénétrants sont donc, en majeure partie, des rayons déviables genre cathodique (rayons β).
Avec le dispositif expérimental qui vient d'être décrit, l'action du champ magnétique sur les rayons α ne pouvait guère être observée pour les champs employés. Le rayonnement très important, en apparence non déviable, observé à petite distance de la source radiante, était constitué par les rayons α; le rayonnement non déviable observé à grande distance était constitué par les rayons γ.
Lorsque l'on tamise le faisceau au travers d'une lame absorbante (aluminium ou papier noir), les rayons qui passent sont presque tous déviés par le champ, de telle sorte qu'à l'aide de l'écran et du champ magnétique presque tout le rayonnement est supprimé dans le condensateur, ce qui reste n'étant alors dû qu'aux rayons γ, dont la proportion est faible. Quant aux rayons α, ils sont absorbés par l'écran.
Une lame d'aluminium de 1/100 de millimètre d'épaisseur suffit pour supprimer presque tous les rayons difficilement déviables, quand la substance est assez loin du condensateur; pour des distances plus petites (34mm et 51mm), deux feuilles d'aluminium au 1/100 sont nécessaires pour obtenir ce résultat.
On a fait des mesures semblables sur quatre substances radifères (chlorures ou carbonates) d'activité très différente; les résultats obtenus ont été très analogues.
On peut remarquer que, pour tous les échantillons, les rayons pénétrants déviables à l'aimant (rayons β) ne sont qu'une faible partie du rayonnement total; ils n'interviennent que pour une faible part dans les mesures où l'on utilise le rayonnement intégral pour produire la conductibilité de l'air.
On peut étudier la radiation émise par le polonium par la méthode électrique. Quand on fait varier la distance AD du polonium au condensateur, on n'observe d'abord aucun courant tant que la distance est assez grande; quand on rapproche le polonium, on observe que, pour une certaine distance qui était de 4cm pour l'échantillon étudié, le rayonnement se fait très brusquement sentir avec une assez grande intensité; le courant augmente ensuite régulièrement si l'on continue à rapprocher le polonium, mais le champ magnétique ne produit pas d'effet appréciable dans ces conditions. Il semble que le rayonnement du polonium soit délimité dans l'espace et dépasse à peine dans l'air une sorte de gaine entourant la substance sur l'épaisseur de quelques centimètres.
Il convient de faire des réserves générales importantes sur la signification des expériences que je viens de décrire. Quand j'indique la proportion des rayons déviés par l'aimant, il s'agit seulement des radiations susceptibles d'actionner un courant dans le condensateur. En employant comme réactif des rayons de Becquerel la fluorescence ou l'action sur les plaques photographiques, la proportion serait probablement différente, une mesure d'intensité n'ayant généralement un sens que pour la méthode de mesures employée.
Les rayons du polonium sont des rayons du genre α. Dans les expériences que je viens de décrire, on n'a observé aucun effet du champ magnétique sur ces rayons, mais le dispositif expérimental était tel qu'une faible déviation passait inaperçue.
Des expériences faites par la méthode radiographique ont confirmé les résultats de celles qui précèdent. En employant le radium comme source radiante, et en recevant l'impression sur une plaque parallèle au faisceau primitif et normale au champ, on obtient la trace très nette de deux faisceaux séparés par l'action du champ, l'un dévié, l'autre non dévié. Les rayons β constituent le faisceau dévié; les rayons α étant peu déviés se confondent sensiblement avec le faisceau non dévié des rayons γ.