La plus grosse partie du rayonnement du radium est formée par des rayons α qui sont probablement émis surtout par la couche superficielle de la matière radiante. Quand on fait varier l'épaisseur de la couche de la matière radiante, l'intensité du courant augmente avec cette épaisseur; l'augmentation n'est pas proportionnelle à l'accroissement d'épaisseur pour la totalité du rayonnement; elle est d'ailleurs plus notable sur les rayons β que sur les rayons α, de sorte que la proportion de rayons β va en croissant avec l'épaisseur de la couche active. La source radiante étant placée à une distance de 5cm du condensateur, on trouve que, pour une épaisseur égale à 0mm,4 de la couche active, le rayonnement total est donné par le nombre 28 et la proportion des rayons β est de 29 pour 100. En donnant à la couche active l'épaisseur de 2mm, soit 5 fois plus grande, on obtient un rayonnement total égal à 102 et une proportion de rayons déviables β égale à 45 pour 100. Le rayonnement total qui subsiste à cette distance a donc été augmenté dans le rapport 3,6 et le rayonnement déviable β est devenu environ 5 fois plus fort.

Les expériences précédentes ont été faites par la méthode électrique. Quand on opère par la méthode radiographique, certains résultats semblent, en apparence, être en contradiction avec ce qui précède. Dans les expériences de M. Villard, un faisceau de rayons du radium soumis à l'action d'un champ magnétique était reçu sur une pile de plaques photographiques. Le faisceau non déviable et pénétrant γ traversait toutes les plaques et marquait sa trace sur chacune d'elles. Le faisceau dévié β produisait une impression sur la première plaque seulement. Ce faisceau paraissait donc ne point contenir de rayons de grande pénétration.

Au contraire, dans nos expériences, un faisceau qui se propage dans l'air contient aux plus grandes distances accessibles à l'observation 9/10 environ de rayons déviables β, et il en est encore de même, quand la source radiante est enfermée dans une petite ampoule de verre scellée. Dans les expériences de M. Villard, ces rayons déviables et pénétrants β n'impressionnent pas les plaques photographiques placées au delà de la première, parce qu'ils sont en grande partie diffusés dans tous les sens par le premier obstacle solide rencontré et cessent de former un faisceau. Dans nos expériences, les rayons émis par le radium et transmis par le verre de l'ampoule étaient probablement aussi diffusés par le verre, mais l'ampoule étant très petite, fonctionnait alors elle-même comme une source de rayons déviables β partant de sa surface, et nous avons pu observer ces derniers jusqu'à une grande distance de l'ampoule.

Les rayons cathodiques des tubes de Crookes ne peuvent traverser que des écrans très minces (écrans d'aluminium jusqu'à 0mm,01 d'épaisseur). Un faisceau de rayons qui arrive normalement sur l'écran est diffusé dans tous les sens; mais la diffusion est d'autant moins importante que l'écran est plus mince, et pour des écrans très minces il existe un faisceau sortant qui est sensiblement le prolongement du faisceau incident[60].

Les rayons déviables β du radium se comportent d'une manière analogue, mais le faisceau déviable transmis éprouve, à épaisseur d'écran égale, une modification beaucoup moins profonde. D'après les expériences de M. Becquerel, les rayons β très fortement déviables du radium (ceux dont la vitesse est relativement faible) sont fortement diffusés par un écran d'aluminium de 0mm,1 d'épaisseur; mais les rayons pénétrants et peu déviables (rayons genre cathodique de grande vitesse) traversent ce même écran sans aucune diffusion sensible, et sans que le faisceau qu'ils constituent soit déformé, et cela quelle que soit l'inclinaison de l'écran par rapport au faisceau. Les rayons β de grande vitesse traversent sans diffusion une épaisseur bien plus grande de paraffine (quelques centimètres), et l'on peut suivre dans celle-ci la courbure du faisceau produite par le champ magnétique. Plus l'écran est épais et plus sa matière est absorbante, plus le faisceau déviable primitif est altéré, parce que, à mesure que l'épaisseur de l'écran croît, la diffusion commence à se faire sentir sur de nouveaux groupes de rayons de plus en plus pénétrants.

L'air produit sur les rayons β du radium qui le traversent une diffusion, qui est très sensible pour les rayons fortement déviables, mais qui est cependant bien moins importante que celle qui est due à des épaisseurs égales de matières solides traversées. C'est pourquoi les rayons déviables β du radium se propagent dans l'air à de grandes distances.

Pouvoir pénétrant du rayonnement des corps radioactifs.—Dès le début des recherches sur les corps radioactifs, on s'est préoccupé de l'absorption produite par divers écrans sur les rayons émis par ces substances. J'ai donné dans une première Note relative à ce sujet[61] plusieurs nombres cités au début de ce travail indiquant la pénétration relative des rayons uraniques et thoriques. M. Rutherford a étudié plus spécialement la radiation uranique[62] et prouvé qu'elle était hétérogène. M. Owens a conclu de même pour les rayons thoriques[63]. Quand vint ensuite la découverte des substances fortement radioactives, le pouvoir pénétrant de leurs rayons fut aussitôt étudié par divers physiciens (Becquerel, Meyer et von Schweidler, Curie, Rutherford). Les premières observations mirent en évidence l'hétérogénéité du rayonnement qui semble être un phénomène général et commun aux substances radioactives[64]. On se trouve là en présence de sources, qui émettent un ensemble de radiations, dont chacune a un pouvoir pénétrant qui lui est propre. La question se complique encore par ce fait, qu'il y a lieu de rechercher en quelle mesure la nature de la radiation peut se trouver modifiée par le passage à travers les substances matérielles et que, par conséquent, chaque ensemble de mesures n'a une signification précise que pour le dispositif expérimental employé.

Ces réserves étant faites, on peut chercher à coordonner les diverses expériences et à exposer l'ensemble des résultats acquis.

Les corps radioactifs émettent des rayons qui se propagent dans l'air et dans le vide. La propagation est rectiligne; ce fait est prouvé par la netteté et la forme des ombres fournies par l'interposition de corps, opaques au rayonnement, entre la source et la plaque sensible ou l'écran fluorescent qui sert de récepteur, la source ayant des dimensions petites par rapport à sa distance au récepteur. Diverses expériences qui prouvent la propagation rectiligne des rayons émis par l'uranium, le radium et le polonium ont été faites par M. Becquerel[65].