Les rayons α sont ceux qui semblent actifs dans la très belle expérience réalisée dans le spinthariscope de M. Crookes[71]. Cet appareil se compose essentiellement d'un grain de sel de radium maintenu à l'extrémité d'un fil métallique en face d'un écran au sulfure de zinc phosphorescent. Le grain de radium est à une très petite distance de l'écran (0mm,5, par exemple), et l'on regarde au moyen d'une loupe la face de l'écran tournée vers le radium. Dans ces conditions l'œil aperçoit sur l'écran une véritable pluie de points lumineux qui apparaissent et disparaissent continuellement. L'écran présente l'aspect d'un ciel étoilé. Les points brillants sont plus rapprochés dans les régions de l'écran voisines du radium, et dans le voisinage immédiat de celui-ci la lueur paraît continue. Le phénomène ne semble pas altéré par les courants d'air; il se produit dans le vide; un écran même très mince placé entre le radium et l'écran phosphorescent le supprime; il semble donc bien que le phénomène soit dû à l'action des rayons α les plus absorbables du radium.
On peut imaginer que l'apparition d'un des points lumineux sur l'écran phosphorescent est provoquée par le choc d'un projectile isolé. Dans cette manière de voir, on aurait affaire, pour la première fois, à un phénomène permettant de distinguer l'action individuelle d'une particule dont les dimensions sont du même ordre de grandeur que celles d'un atome.
L'aspect des points lumineux est le même que celui des étoiles ou des objets ultra-microscopiques fortement éclairés qui ne produisent pas sur la rétine des images nettes, mais des taches de diffraction; et ceci est bien en accord avec la conception que chaque point lumineux extrêmement petit est produit par le choc d'un seul atome.
Les rayons pénétrants non déviables γ semblent être de tout autre nature et semblent analogues aux rayons Röntgen. Rien ne prouve, d'ailleurs, que des rayons peu pénétrants de même nature ne puissent exister dans le rayonnement du radium, car ils pourraient être masqués par le rayonnement corpusculaire.
On vient de voir combien le rayonnement des corps radioactifs est un phénomène complexe. Les difficultés de son étude viennent s'augmenter par cette circonstance, qu'il y a lieu de rechercher si ce rayonnement éprouve de la part de la matière une absorption sélective seulement, ou bien aussi une transformation plus ou moins profonde.
On ne sait encore que peu de choses relativement à cette question. Toutefois, si l'on admet que le rayonnement du radium comporte à la fois des rayons genre cathodique et des rayons genre Röntgen, on peut s'attendre à ce que ce rayonnement éprouve des transformations en traversant les écrans. On sait, en effet: 1º que les rayons cathodiques qui sortent du tube de Crookes à travers une fenêtre d'aluminium (expérience de Lenard) sont fortement diffusés par l'aluminium, et que, de plus, la traversée de l'écran entraîne une diminution de la vitesse des rayons; c'est ainsi que des rayons cathodiques d'une vitesse égale à 1,4 × 1010 centimètres perdent 10 pour 100 de leur vitesse en traversant 0mm,01 d'aluminium[72]; 2º les rayons cathodiques, en frappant un obstacle, donnent lieu à la production de rayons Röntgen; 3º les rayons Röntgen, en frappant un obstacle solide, donnent lieu à une production de rayons secondaires, qui sont en partie des rayons cathodiques[73].
On peut donc, par analogie, prévoir l'existence de tous les phénomènes précédents pour les rayons des substances radioactives.
En étudiant la transmission des rayons du polonium à travers un écran d'aluminium, M. Becquerel n'a observé ni production de rayons secondaires ni transformation en rayons genre cathodique[74].
J'ai cherché à mettre en évidence une transformation des rayons du polonium, en employant la méthode de l'interversion des écrans: deux écrans superposés E1 et E2 étant traversés par les rayons, l'ordre dans lequel ils sont traversés doit être indifférent, si le passage au travers des écrans ne transforme pas les rayons; si, au contraire, chaque écran transforme les rayons en les transmettant, l'ordre des écrans n'est pas indifférent. Si, par exemple, les rayons se transforment en rayons plus absorbables en traversant du plomb, et que l'aluminium ne produise pas un effet du même genre avec la même importance, alors le système plomb-aluminium paraîtra plus opaque que le système aluminium-plomb; c'est ce qui a lieu pour les rayons Röntgen.