Cette circonstance témoigne, tout aussi bien que l'aplatissement, en faveur de la fluidité primitive de la Terre. Elle montre que, au moins à une certaine époque, les pressions ont pu se répartir et se transmettre à travers toute la masse du Globe avec une certaine liberté. On pourrait être tenté de voir dans le même fait une infraction au principe posé par Newton, concernant l'égalité des pressions exercées au centre par diverses colonnes liquides. Il semble, en effet, que la pesanteur doit reprendre la même valeur en des points symétriques par rapport au centre, en sorte que l'équivalence des pressions exige l'égalité des altitudes. Mais cette conséquence n'est forcée que si l'on suppose la Terre homogène, et l'inégale densité des matériaux du globe terrestre peut aisément compenser une différence de longueur, d'ailleurs relativement faible.
Après l'abaissement fictif que nous avons fait subir au niveau des mers pour obtenir la surface d'équidéformation, le groupement des terres émergées rentre plus exactement dans une formule simple. On peut dire qu'elles se rattachent à trois masses principales, situées dans l'hémisphère Nord, qui prennent leur plus grande extension vers le 60e degré de latitude nord, vont en s'amincissant vers le Sud, disparaissent, et se retrouvent soudées ensemble vers le pôle austral. Ces trois masses continentales ont respectivement leurs centres dans la Scandinavie, la Sibérie orientale, la région du lac des Esclaves, c'est-à-dire qu'elles sont espacées de 120° en longitude. La séparation admise ici entre l'Europe et la Sibérie orientale semblera peut-être quelque peu fictive. Elle se justifie par l'existence d'une dépression qui, tout en n'étant pas occupée par la mer, n'en est pas moins très marquée et très étendue. D'ailleurs ces trois régions constituent des plateaux archéens, émergés de longue date et qui ont joui à travers les périodes géologiques d'une stabilité presque complète.
Les extensions données à l'Europe au Nord-Ouest, à l'Asie au Sud-Est se justifient non seulement par le relevé des profondeurs marines, mais par la Géologie historique. La répartition des espèces végétales et animales dans les îles, la nature des dépôts ramenés par les sondages, montrent que ces portions de mer peu profondes, rattachées aux continents actuels, ont été effectivement émergées à une époque où la vie était déjà répandue à la surface de la Terre.
Il est à remarquer que l'Australie, considérée comme prolongement péninsulaire de l'Asie, l'Afrique considérée comme annexe du plateau Scandinave, n'admettent point le même méridien central que la masse continentale dont on fait dépendre chacune d'elles. L'une et l'autre sont déviées fortement du côté de l'Est: une différence de même sens et non moins marquée existe, en longitude, entre l'Amérique du Nord et l'Amérique du Sud.
La liaison des péninsules australes aux continents est imparfaite et le rétrécissement des terres émergées, quand on marche du Nord au Sud, ne se fait pas d'une manière continue. Il existe en effet une zone transversale de rupture à peu près parallèle à l'équateur et située à quelque distance au nord de celui-ci.
Le long de cette zone on voit s'enchaîner des bassins approximativement circulaires, bordés de hautes montagnes ou de cassures récentes. Ce sont des régions instables, sujettes aux éruptions ou aux tremblements de terre. On les nomme les fosses méditerranéennes, parce que le fossé qui sépare l'Europe de l'Afrique en fournit les exemples les mieux caractérisés et les mieux connus. Il faut y joindre les chotts Sahariens, la Mer Noire, la Mer Morte, la dépression Arabo-Caspienne, celle du Turkestan chinois, les mers du Mexique et des Antilles.
On doit à Lowthian Green d'avoir donné un énoncé géométrique embrassant ces divers faits. Il suffit de considérer les centres des trois masses continentales de l'hémisphère Nord comme les sommets d'un tétraèdre régulier inscrit dans la sphère, et dont le quatrième sommet tomberait au pôle antarctique. Les arêtes et notamment les parties voisines des sommets, correspondront alors à des régions saillantes, les centres des faces aux points de plus grande dépression. On peut aussi déplacer les sommets du tétraèdre de quantités égales sur des droites partant du centre, de manière à faire grandir le solide en le laissant semblable à lui-même. Quand son volume sera devenu équivalent à celui de la sphère, les pointements qui apparaîtront en dehors de la sphère représenteront approximativement les continents. On reconnaît sans peine qu'ils seront élargis au Nord, allongés en pointe vers le Sud, que leur développement sera maximum vers le 60e degré de latitude Nord, pendant que les mers auront leur plus grande extension d'une part au pôle Nord, de l'autre vers le 55e degré de latitude australe (Pl. II).
L'accord avec les faits est assez remarquable pour engager à la recherche d'une explication physique. La Terre, dans son ensemble, montrerait une tendance à se déformer, à partir d'un ellipsoïde de révolution, pour se rapprocher de l'aspect extérieur d'un tétraèdre régulier. Or on peut citer des expériences où cette déformation s'accomplit, pour ainsi dire, spontanément. Un tube cylindrique de caoutchouc, quand la pression du milieu ambiant augmente, prend une section triangulaire: un ballon de verre où l'on a fait le vide et que l'on échauffe à la température de ramollissement du verre se déprime en quatre points situés à 120 degrés les uns des autres. L'expérience réussit encore avec un ballon sphérique de caoutchouc que l'on dégonfle progressivement. Dans ces divers cas la déformation est imposée parce que le volume de l'enceinte diminue proportionnellement plus vite que la superficie de l'enveloppe. Il y a lieu de penser que le même conflit doit se produire dans le refroidissement d'une planète primitivement fluide et qui s'enveloppe d'une croûte, suivant la conception de Descartes. La surface de cette enveloppe peu conductrice arrive assez vite à la température d'équilibre qu'elle doit prendre sous l'influence des rayons solaires. A partir de ce moment toute la déperdition de chaleur se fait aux dépens de la masse interne, qui se contracte par suite plus que l'écorce, et, comme celle-ci n'est pas assez tenace pour se soutenir sans appui, la conservation de la forme sphérique est impossible.
Maintenant la déformation a-t-elle comme terme nécessaire un tétraèdre? On a invoqué, pour le démontrer, soit le principe de la moindre action, soit le principe de la conservation de l'énergie. On fait valoir que, la sphère ayant la propriété d'enfermer le plus grand volume possible sous une surface donnée, le tétraèdre est, parmi les polyèdres réguliers convexes, celui qui enferme sous une surface donnée le plus petit volume. Le tétraèdre serait par suite, entre les figures dérivées de la sphère, celle qui réalise au prix du plus petit changement de surface une diminution de volume imposée. Mais cette conséquence ne serait rigoureuse que si le champ des déformations était limité aux figures convexes, et ni la théorie, ni l'observation ne donnent lieu de croire qu'il en soit ainsi. Malgré cette incontestable lacune mathématique, le système de Green est digne d'une grande attention à cause du nombre des faits qu'il se montre capable de comprendre et d'assimiler. Il la mérite d'autant mieux que l'auteur a réussi à faire rentrer dans sa théorie les deux anomalies les plus apparentes que présente, à première vue, le dessin géographique.
Il y a lieu de se demander, en effet, pourquoi les trois masses continentales allongées suivant un méridien présentent une solution de continuité, une cassure orientée parallèlement à l'équateur et d'où vient que, dans chacune de ces arêtes, la partie australe est déviée vers l'Est par rapport à la moitié Nord.