En premier lieu, la Terre a-t-elle une écorce solide, une lithosphère? Nous avons vu que des théoriciens d'une grande autorité se prononcent pour la négative. Ils ne veulent pas admettre qu'une croûte relativement mince, enveloppant un noyau liquide, résiste aux marées qu'elle aurait à subir, au poids des montagnes dont sa surface est hérissée. Pour Lord Kelvin, pour M. Darwin, la solidification d'une planète doit commencer par le centre, progresser vers la surface, et ne porter en dernier lieu que sur une couche mince.
Les géologues se montrent, en général, peu disposés à marcher dans cette voie; il nous semble que leur répugnance pourrait être fondée avec plus de force encore sur l'examen de la surface de la Lune. Non seulement, en effet, les épanchements venus de l'intérieur y ont nivelé le fond des mers et des cirques, mais, ce qui est plus significatif encore, des fragments solidifiés, épais de plusieurs milliers de mètres, ont pu y flotter à la dérive.
On continuera donc, malgré les beaux travaux mathématiques auxquels nous avons fait allusion, à parler de l'écorce solide des planètes. On le peut en conscience, parce que, pour simplifier le problème et le rendre accessible au calcul, on est obligé d'introduire dès le début des hypothèses hasardeuses, notamment celle d'une certaine homogénéité. Devant cette nécessité, les faits d'observation gardent une valeur prépondérante. Que l'on prenne garde, en contestant à l'intérieur des planètes le droit d'être fluide, à leur croûte celui de se supporter elle-même, de ressembler aux médecins du XVIIe siècle, qui refusaient au sang la faculté de circuler dans les artères.
Un second litige, dans lequel les astronomes auraient leur mot à dire, a pour sujet la formation des montagnes. Ainsi que nous l'avons vu au Chapitre V, la théorie de la contraction par refroidissement, après avoir traversé une période de brillante faveur, se heurte à des objections. On trouve le refroidissement séculaire trop lent, trop peu sensible pour donner lieu à des déformations aussi grandes. Il faut admettre, dit-on, que le poids des sédiments déposés sur les rivages les contraint à s'affaisser, relève par un mouvement de bascule une bande de terrain parallèle, et tend ainsi à exagérer les différences de niveau primitives.
L'examen de la Lune doit nous faire envisager ce complément d'explication avec beaucoup de défiance. Sur notre satellite les érosions, les sédiments, ne se révèlent que par des traces insignifiantes et douteuses. Et cependant les différences de niveau y sont énormes et brusques. Nous y voyons, aussi clairement que sur la Terre, les sommets les plus élevés accumulés au bord des massifs, les fosses océaniques rejetées près des côtes. Si donc la théorie de la contraction était jugée insuffisante pour rendre compte de l'apparition des montagnes, ce n'est pas au poids des sédiments qu'il faudrait faire appel pour y suppléer. L'expédient, fût-il jugé efficace pour la Terre, ne le serait pas pour la Lune. La réaction du fluide intérieur, comprimé par les affaissements, semble, au contraire, fournir les éléments d'une explication admissible dans tous les cas.
Enfin, les caractères si nets par lesquels les montagnes lunaires se différencient des montagnes terrestres doivent nous suggérer une dernière réflexion.
Pour les naturalistes du commencement du XIXe siècle, les chaînes montagneuses avaient comme origine des compartiments soulevés. Pour leurs successeurs immédiats, ce sont des massifs demeurés en retard sur l'affaissement des régions voisines. Pour nos contemporains, ce sont uniquement des fragments plissés par compression latérale.
Ce dernier point de vue pourrait bien être trop exclusif. La tendance au plissement, si générale qu'elle soit sur la Terre, ne se manifeste assurément pas sur la Lune. Elle n'est donc pas une condition nécessaire pour la genèse des montagnes. Ne serait-elle pas particulière à certaines périodes de l'histoire géologique?
Nous sommes conduits à le penser par un travail souvent cité de M. Davison [13]. En étudiant de plus près la loi formulée par Élie de Beaumont, il a été amené à faire la remarque suivante: l'émission de la chaleur dans l'espace ne se fait plus aux dépens de la surface, dont le refroidissement est achevé. Mais elle ne se fait pas davantage aux dépens des couches très profondes, dont la température demeure sensiblement invariable. Le taux extrême du refroidissement est atteint à une profondeur que l'on peut estimer, pour la Terre, à 100km. Il en résulte que les plissements n'ont aucune raison de se produire au delà de 8km de profondeur. Plus bas, les couches, se contractant plus que celles qui les supportent, se trouvent étirées.
[Note 13: ][ (retour) ] C. Davison, On the distribution of strain in the Earth's crust (Philosophical Transactions, 1887).