Ces deux méthodes sont sans valeur pratique à cause de la petitesse des angles qui interviennent et de l'incertitude des réfractions terrestres. Riccioli se flatte d'éliminer ces causes d'erreur en observant vers le Midi, dans des lieux fort élevés, par des jours sereins. C'est une dangereuse illusion. Le chiffre donné (62250 toises au degré) s'écarte plus de la vérité, en sens contraire, que celui de Snellius.

La première triangulation vraiment entourée de garanties est celle de Picard en 1671. La base, mesurée près de Juvisy, avec des règles de bois alignées au cordeau, a 5663 toises. L'arc total s'étend de Malvoisine, au sud de Paris, à Sourdon, près d'Amiens. Les distances zénithales méridiennes, mesurées avec un quadrant, sont différentielles, c'est-à-dire indépendantes de l'erreur d'index, de la déclinaison de l'étoile et, dans une grande mesure, de l'erreur d'excentricité. Le parallélisme de la lunette au plan du limbe est soigneusement vérifié par une méthode dont Picard est l'inventeur. La méridienne est tracée par l'observation des hauteurs égales d'un même astre; elle est contrôlée par des observations de digressions de la Polaire, d'éclipses de satellites de Jupiter ou d'éclipses de Lune. Il y a, en somme, fort peu à reprendre dans les observations de Picard, et les défauts qu'on y relève ne lui sont guère imputables. La construction des instruments est évidemment plus grossière que celle des théodolites modernes. Les signaux naturels, arbres ou clochers, sont utilisés par économie. Il est ordinairement impossible de placer l'instrument au point même que l'on a visé. D'où la nécessité de réductions au centre, toujours pénibles et incertaines.

L'opération de Picard avait été entreprise sous les auspices de l'Académie des Sciences récemment fondée. En même temps des missions scientifiques étaient envoyées au Sénégal, à la Guyane, aux Antilles. Dans les instructions remises aux observateurs, il leur était recommandé de s'assurer si l'intensité de la pesanteur ne variait pas d'un lieu à l'autre. Richer, qui observait à Cayenne, annonça en 1672 que le pendule à secondes, emporté de Paris, devait être raccourci pour osciller dans le même temps à Cayenne. En d'autres termes, l'intensité de la pesanteur diminue quand on se rapproche de l'équateur.

Personne assurément ne songe à placer Picard et Richer, observateurs judicieux et exacts, sur le même rang que Newton. Il doit nous être permis cependant de constater avec quelque fierté que les Communications de nos compatriotes, faites en 1671 et 1672 à l'Académie des Sciences de Paris, ont exercé une influence décisive sur l'éclosion des idées contenues dans le livre immortel des Principes de la Philosophie naturelle.

Vers 1660, paraît-il, Newton avait conçu la pensée que la même force qui dévie les projectiles de la ligne droite retient aussi la Lune dans son orbite. Il avait tenté de faire une comparaison numérique en admettant que cette force, dirigée vers le centre de la Terre, varie en raison inverse du carré de la distance, mais il était parti d'une valeur très inexacte du rayon terrestre. Les résultats étaient discordants. Newton renonça à suivre les conséquences de cette idée. Il reprit son calcul quand il connut le résultat de Picard: cette fois, la concordance était parfaite. Newton en fut si ému qu'il ne put vérifier lui-même son travail et dut recourir à l'obligeance d'un ami.

De même, quand il connut le résultat de Richer, Newton fut amené à penser, avant toute mesure, que la Terre ne devait pas être sphérique, mais aplatie vers les pôles. S'il en est ainsi, les points de l'équateur seront plus loin du centre, et par suite moins attirés que les pôles.

Il est vrai que, même si l'on suppose la Terre sphérique, la pesanteur doit subir une diminution appréciable à l'équateur du fait de la rotation. Cette diminution, Newton est en mesure de l'évaluer par le même raisonnement qui l'a conduit à la découverte de l'attraction universelle. Il traite le mouvement diurne comme un mouvement absolu et applique les principes de Galilée: indépendance de l'effet d'une force par rapport au mouvement du point d'application, proportionnalité des forces aux chemins parcourus dans un même temps. Soient R le rayon équatorial, ω l'angle, en unité trigonométrique, dont tourne la Terre en une seconde. Un corps qui demeure en repos relatif à l'équateur se rapproche du centre à partir de la trajectoire rectiligne qui résulterait de sa vitesse acquise. Cette déviation, en 1 seconde, a pour valeur approchée Rω²/2.

Le même corps, libre d'obéir à l'attraction terrestre, tomberait vers le centre, en 1 seconde, d'une quantité que l'on représente par g/2, et que fait connaître l'observation du pendule. La fraction de la pesanteur qui s'emploie à maintenir le corps à la surface, sans le presser, est donc φ = Rω²/2: g/2 = Rω²/g. Les mesures de Picard et de Richer donnent pour la valeur de ce rapport φ = 1/289.