Il n'y a donc que les grandeurs mesurables qui soient l'objet des mathématiques. De là cette nouvelle définition: c'est la science de la mesure des grandeurs.

Cette définition est plus juste que la précédente; mais elle est encore superficielle. En effet, mesurer ne semble guère en réalité qu'une opération purement mécanique. Or c'est là l'objet d'un art et non d'une science. L'arpentage n'est pas la géométrie. C'est l'arpenteur qui mesure, c'est le géomètre qui fournit les moyens de mesurer. La mesure n'est donc pas l'objet immédiat de la science. Elle n'en est que l'objet indirect et éloigné. Voyons comment elle peut devenir un objet vraiment scientifique.

La comparaison directe et immédiate d'une grandeur quelconque à l'unité est, la plupart du temps, impossible. Par exemple, si je demande combien il y a d'arbres dans une forêt, je ne puis le savoir qu'en comptant les arbres un à un, ce qui demanderait un temps infini. Il en est de même dans la plupart des cas. Prenons le plus facile: la mesure d'une ligne droite par la superposition d'une de ses parties. Cela suppose: 1o que nous pouvons parcourir la ligne, ce qui exclut les longueurs inaccessibles (par exemple la distance des corps célestes); 2o que la ligne ne soit ni trop grande, ni trop petite, qu'elle soit convenablement située: par exemple horizontale, non verticale. Si cela est vrai des lignes droites, cela est vrai à plus forte raison des lignes courbes, des surfaces, des volumes, et à plus forte raison encore des vitesses, des forces, etc. Comment toutes ces quantités peuvent-elles être mesurées? C'est là le problème qui rend nécessaire les mathématiques.

Les mathématiques, dans leur essence même, ont donc pour objet de ramener les grandeurs non immédiatement mesurables à des grandeurs immédiatement mesurables. C'est par là qu'elles sont une science. En effet, l'intervalle qui sépare une grandeur à mesurer de la grandeur immédiatement mesurable peut être plus ou moins grand. De là une série de réductions, depuis la grandeur la plus éloignée jusqu'à la plus prochaine; et c'est la réduction de ces grandeurs les unes aux autres qui constitue la science; soit, par exemple, à mesurer la chute verticale d'un corps pesant. Il y a ici deux quantités distinctes: la hauteur d'où le corps est tombé, et le temps de la chute. Or ces deux quantités sont liées l'une à l'autre; elles sont, comme on dit en mathématique, fonction l'une de l'autre. D'où il suit que l'on peut mesurer l'une par l'autre; par exemple dans le cas d'un corps tombant dans un précipice, on mesure la hauteur de la chute par le temps qu'il met à tomber; en d'autres cas, au contraire, le temps n'étant pas directement observable, sera déduit de la hauteur. Si donc on trouve une loi qui lie ces deux quantités et qui permette de conclure de l'une à l'autre, on aura réduit une grandeur non mesurable directement à une autre qui peut l'être. C'est là un problème mathématique. Autre exemple. Comment mesurer la distance des corps célestes qui sont inaccessibles? On regardera cette distance comme faisant partie d'un triangle, dont on connaîtra un côté et deux angles. Or, la géométrie nous apprend dans ce cas à découvrir les deux côtés du triangle, et par conséquent nous donne le moyen de construire le triangle dans lequel il suffira de tirer une ligne du sommet à la base pour avoir la distance réelle. Maintenant, la distance étant connue, on peut, du diamètre apparent conclure le diamètre réel, passer de là au volume et même au poids, en y ajoutant d'autres éléments.

Paul Janet.

Le mathématicien prépare d'avance des moules que le physicien viendra plus tard remplir.

Taine.

En d'autres termes, l'ordre mathématique inspire la conception de l'ordre physique.