... Il n'en est pas de même d'un corps à trois dimensions, d'un corps ayant longueur, largeur et profondeur. Sa représentation sur une surface plane est inévitablement altérée. Des lignes qui sur le corps sont égales entres elles, peuvent être extrêmement inégales dans la représentation plane. Les angles formés dans l'espace par les arêtes ou par les diagonales du corps n'éprouvent pas de moindres altérations comparatives, quand elles viennent à être figurées sur un plan.

...........................

Des hommes de génie, Desargues en tête, réussirent enfin à rattacher aux règles de la géométrie élémentaire la plupart des méthodes, des tracés en usage dans la coupe des pierres et dans la charpente. Malheureusement leurs démonstrations étaient longues, embarrassées; elles devaient toujours rester hors de la portée des simples ouvriers.

À quoi tenaient ces complications? Elles tenaient à ce qu'on était obligé de créer la science tout entière, à l'occasion de chaque problème. Adoptez cette méthode dans telle autre branche quelconque des mathématiques, et la plus inextricable confusion en sera aussi la conséquence inévitable.

...........................

Monge débrouilla ce chaos. Il fit voir que les solutions graphiques de tous les problèmes de la géométrie à trois dimensions se fondaient sur un très petit nombre de principes qu'il exposa avec une merveilleuse clarté. Désormais aucune question, parmi les plus complexes, ne devait être l'apanage exclusif des esprits d'élite; avec des instruments bien définis et une méthode de recherche uniforme, la géométrie descriptive, dont Monge devint le créateur, pénétra jusque dans les rangs nombreux de la classe ouvrière.

Arago.

Une branche considérable de la géométrie, qui se recommande par des applications nombreuses, et que cultivaient par instinct plutôt que méthodiquement tous les ouvriers employés aux arts de construction, a été réduite en corps de doctrine.. On sent qu'il s'agit ici de la théorie et de la pratique des opérations qui résultent de la combinaison des lignes, des plans et des surfaces dans l'espace, et que M. Monge a fait connaître sous le nom de géométrie descriptive. La coupe des pierres, la charpente, certaines parties de la fortification et de l'architecture, la perspective, la gnomonique: en un mot, toutes les parties des mathématiques, soit pures, soit appliquées, dans lesquelles on considère l'espace avec ses trois dimensions, sont du ressort de ce complément nouveau de la géométrie élémentaire qui jusque-là s'était arrêtée à la mesure des aires et des volumes... Ce n'est pas qu'avant M. Monge, les géomètres n'eussent connu la méthode des projections et ne l'eussent employée à la résolution de plusieurs problèmes..., mais cette théorie... n'avait pas encore cette indépendance et cet enchaînement de questions qui en ont fait une véritable science...

Delambre.