Le physicien Jacobi raconte que son frère, le grand mathématicien, croyant avoir découvert une loi générale des nombres, l'essaya sur un nombre pris au hasard. Ce nombre la mit en défaut, tandis que beaucoup d'autres nombres essayés à leur tour la vérifièrent. Plus tard, le grand Jacobi reconnut que le nombre pris d'abord appartenait à la seule catégorie de nombres formant exception à la loi considérée.
Un paradoxe singulier rend ce jeu,—le problème de Saint-Pétersbourg, c'est le nom qu'on lui donne,—mémorable et célèbre. Pierre joue avec Paul; voici les conditions: Pierre jettera une pièce de monnaie autant de fois qu'il sera nécessaire pour qu'elle montre le côté face. Si cela arrive au premier coup, Paul lui donnera un écu; si ce n'est qu'au second, deux écus; s'il faut attendre au troisième coup, il en donnera quatre, huit au quatrième, toujours en doublant. Tels sont les engagements de Paul. Quels doivent être ceux de Pierre? La science consultée par Daniel Bernoulli, donne pour réponse: une somme infinie. Le parti de Pierre, c'est le mot consacré, est au-dessus de toute mesure.
...........................
..... Il faut approuver absolument et simplement la réponse réputée absurde. Pierre possède, je suppose, un million d'écus et les donne à Paul en échange des promesses convenues. Il est fou! dira-t-on. Le placement est aventureux, mais excellent; l'avantage infini est réalisable. Qu'il joue obstinément, il perdra une partie, mille, mille millions de milliards peut-être; qu'il ne se rebute pas, qu'il recommence un nombre de fois que la plume s'userait à écrire, qu'il diffère surtout le règlement des comptes, la victoire pour lui est certaine, la ruine de Paul inévitable. Quel jour? quel siècle? On l'ignore; avant la fin des temps certainement, le gain de Pierre sera colossal.
J. Bertrand.
L'application du calcul aux décisions judiciaires est, dit Stuart Mill, le scandale des mathématiques. L'accusation est injuste. On peut peser du cuivre et le donner pour de l'or, la balance reste sans reproche. Dans leurs travaux sur la théorie des jugements, Condorcet, Laplace et Poisson n'ont pesé que du cuivre.
La réunion, quelle qu'elle soit, qui peut juger bien ou mal, est remplacée dans leurs études par des urnes où l'on puise des boules blanches ou noires.....
...........................