Les vérités géométriques sont en quelque sorte l'asymptote des vérités physiques, c'est-à-dire le terme dont celles-ci peuvent indéfiniment approcher, sans jamais y arriver exactement.
d'Alembert.
Les figures géométriques sont de pures conceptions de l'esprit et cependant la géométrie n'est pas seulement une science spéculative très propre à développer les facultés intellectuelles.....; mais elle est encore utile par ses nombreuses applications aux arts. Cela tient à ce que les volumes de certains corps, leurs surfaces, les portions communes à deux portions de ces surfaces peuvent être regardés comme étant sensiblement des volumes, des surfaces et des lignes géométriques.
Compagnon.
Avec des définitions précises et des axiomes certains, la Mathématique établit des déductions sûres tant que le raisonnement se maintient dans les voies de l'évidence logique. C'est pourquoi la science des grandeurs porte, à l'exclusion de toute autre, le titre glorieux d'«exacte».
Cela signifie surtout que, moins qu'aucune autre, elle est sujette à l'erreur. La perception a ses méprises, la conception ses lacunes, l'induction ses témérités, l'opinion ses dissidences, l'observation ses mécomptes, l'expérience ses égarements. Seule, la déduction ne trompe point, quand elle suit la loi du raisonnement. La science qu'elle établit progresse avec plus ou moins de lenteur; mais ses vérités une fois démontrées, sont parfaites, définitives, et ne changent plus.
La théorie des grandeurs est l'unique exemple d'une construction scientifique ne laissant rien à désirer..... À ce titre, elle méritait le nom de «science par excellence» (mathésis) que les Grecs lui avaient donné. Elle est la science type, l'idéal de connaissance certaine proposé pour modèle à toutes les sciences de fait, mais dont celles-ci ne se rapprochent qu'en lui empruntant sa méthode et en subordonnant leurs mensurations à ses lois.
Bourdeau.