Mais, comme elle se trouve 17. fois plus lente, il est évident qu'en supposant la surface de la Terre exactement sphérique, la pesanteur sous l'Equateur excéde sa diminution, ou la force centrifuge, 17. fois 17 fois, c'est-à-dire 289. fois, & par-là la vîtesse de la chûte des corps, sous l'Equateur, seroit à celle de leur chûte sous les Poles, comme 288 sont à 289; & un Pendule d'une seconde, qui feroit sous le Pole 86400. vibrations pendant un jour Solaire, n'en feroit sous l'Equateur qu'environ 86250. tout de même que le Pendule d'une seconde de Paris, étant transporté sous l'Equateur, & y faisant ses chûtes curvilignes, ou ses vibrations un peu plus lentes qu'ici, retarderoit par jour de 2. min. 5. secondes, ou environ.
L'expérience de Mr. Richer faite dans l'Isle de Caïenne, celle de Mr. Halley dans l'Isle de Ste. Hélène, & celles de ceux dont on peut voir les noms à la page 227. de cette Edition, ayant vérifié, à quelques circonstances près, cette diminution de la pesanteur sous l'Equateur, qui est une conséquence nécessaire & indubitable du mouvement journalier de la Terre; il nous reste à voir le dérangement que causeroient sur sa surface les forces centrifuges de ce même mouvement sous les Cercles parallèles de l'Equateur, si la Terre étoit exactement sphérique.
Tout le monde sait qu'une Balance exacte étant suspendue par son milieu, & demeurant en repos, les Bassins, ou des Poids égaux suspendus par des cordelettes à ses deux extrémités, font prendre à ces cordelettes, ou plutôt à leurs milieux, des situations perpendiculaires à leurs Horizons, & qui tendent directement au centre de la Terre. Mais si l'on donne à cette Balance un mouvement circulaire, dont le centre soit le point de suspension de la Balance, on verra d'abord que les Bassins, ou les poids, s'éloigneront de la perpendiculaire, à proportion de la vîtesse du mouvement circulaire; de sorte que les cordelettes ne suivront plus la direction ordinaire de la pesanteur vers le centre de la Terre.
Figurons-nous à présent une grande Balance curviligne, dont le milieu soit suspendu à l'un des Poles de la Terre, & dont les deux extrémités s'étendent jusqu'à égale élévation du même Pole, de part & d'autre; il est évident que si la figure sphérique de la Terre (qui est-ce que nous examinons) tourne autour de son axe, & qu'elle emporte en même tems cette Balance curviligne, par un mouvement circulaire autour du même axe, les poids qui étant en repos devroient converger vers le centre de la Terre, s'éloigneront un peu de cette convergence & des perpendiculaires, de part & d'autre. Ainsi le Sinus du petit angle de déviation, compris entre la perpendiculaire & la nouvelle direction du poids, sera bien près de 1/289 du produit du Sinus, & du Co-Sinus de l'élévation du Pole, divisé par le rayon.
On voit clairement que sans imaginer cette Balance curviligne, ce raisonnement peut également s'appliquer à toutes les lignes à plomb, qui se trouvent sur la surface de la Terre. C'est de cette maniére qu'on trouve qu'à Paris, & en cent autres endroits de même Latitude, qu'un Pendule en repos ne tendroit pas perpendiculairement à l'Horizon, mais feroit avec la perpendiculaire un angle de près de six minutes, ce qui seroit assez sensible, si la Terre étoit exactement sphérique; cependant comme en nul endroit du Monde on ne trouve aucune déviation, c'est une preuve suffisante que la face de la Terre est telle, qu'il faut qu'elle soit, pour que la direction de la pesanteur soit perpendiculaire, ce qui ne se peut que dans une figure sphéroïde.
Cette figure sphéroïde produit encore un autre changement à l'égard de la pesanteur, mais de peu de conséquence. L'on sait que, sans considérer la diminution de la pesanteur, dont nous venons de parler, la pesanteur elle-même varie encore selon la diversité des distances du centre de la Terre, quand même il n'y auroit point de rotation. C'est ce qui fait que les expériences des Pendules transportés en différens Climats, ne répondent pas dans la derniére précision au calcul que nous avons donné ci-dessus, quoiqu'elles prouvent toutes en général que la pesanteur différe sensiblement, & qu'elle est toujours moins forte vers l'Equateur, que vers les Poles. C'est aussi ce qui partage les sentimens des plus grands Géométres sur la proportion de l'axe de la rotation de la Terre au diametre de son Equateur. Mr. Huygens & après lui Jaques Herman dans son excellent Ouvrage de la Phoronomie, ont déterminé cette proportion, comme de 577. à 578.; mais Neuton nous la donne de 229. à 230, environ triple de la précédente. La différence de ces mesures ne provient que de ce que Mr. Huygens n'a considéré la pesanteur que comme une force qui pousse les corps vers un seul centre; au lieu que Neuton l'a considérée comme une force par laquelle tous les corps & toutes les particules de la Terre, jusqu'aux plus petites, sont tirées les unes vers les autres.