Qui, più che di decadenza, deve parlarsi di arresto, di stasi. E la prima rinascita scientifica dell’Occidente sarà dovuta alle influenze arabe.
15. La coltura scientifica nell’alto Medio Evo (secoli VI-XII): A). Nel mondo cristiano. — Dopo la fine dell’Impero romano d’Occidente, in Europa, il culto delle matematiche si spegne completamente per circa un secolo. Il matematico non è che un astrologo, un indovino, un ciarlatano, la cui scienza è interdetta ufficialmente dai nuovi governi barbarici. Un solo personaggio è da menzionare tra la fine del sec. V e i primi del sec. VII: Severino Boezio (480-524), una delle vittime della reazione degli ultimi anni del re ostrogoto in Italia, Teodorico. Egli fu autore di un operetta famosa, scritta in carcere, La filosofia consolatrice (De consolatione philosophiae), ma scrisse anche due libri di aritmetica e di geometria, riassunto di matematici greci, specie di Euclide. Or bene, nella sua geometria, egli ci fa cenno della conoscenza, presso gli antichi (egli dice i Pitagorici), di cifre, somigliantissime a quelle usate dagli Arabi d’Occidente (i così detti numerali Gubar), che sono le progenitrici delle nostre cifre. Noi non riusciamo, neanche oggi, a spiegare in che modo la notizia di tali cifre fosse penetrata nella coltura matematica dei Romani del Medio Evo. Tuttavia, a parte questo particolare, che c’impressiona, la Geometria di Boezio, l’ultima opera matematica romana, dell’evo antico e la prima dell’evo medio, è di scarsissimo valore. Contiene gli enunciati del primo libro di Euclide, di poche proposizioni del terzo e quarto libro senza dimostrazione. Alquanto migliore è la sua Aritmetica. Tuttavia, l’una e l’altra rimasero in Occidente, per circa sette secoli, come l’unica fonte di questo genere di coltura scientifica.
Le discipline matematiche, come la coltura dell’epoca risorgono, nel sec. IX, al costituirsi dell’Impero carolingio, che rinnova nella storia medievale la stessa funzione, che avea avuta l’antico Impero romano: quella cioè di costituire, in mezzo a un mondo barbarico, un’oasi di pace e di civiltà. Or bene, nella riforma della istruzione dell’Impero, fatta da Carlo Magno, e di cui il merito principale è da attribuire al monaco anglosassone Alcuino (735-804), che fu come il suo ministro della istruzione pubblica, noi troviamo che le nuove scuole, nel corso superiore (il quadrivio), hanno anche l’insegnamento dell’aritmetica, della geometria, dell’astronomia. Egli, Alcuino, compose, a questo proposito, una raccolta di problemi dal titolo — Quesiti per aguzzare l’ingegno dei giovani —, ed egli stesso, con altri, fu incaricato di tenere a Corte delle lezioni di matematica e di astronomia.
La riforma dell’istruzione, compiuta da Carlo Magno e da Alcuino, ha carattere principalmente ecclesiastico. Certo, il grande imperatore volle che anche il popolo potesse istruirsi, e richiese che in ogni cittadina o villaggio, il prete tenesse scuola gratuita ai fanciulli. Ma le sue grandi riforme riguardarono le scuole annesse ai vescovati e ai monasteri, dove monaci e laici, ma specie i primi, avrebbero coltivato i rami superiori della coltura.
La sua riforma non potè mancare di dare qualche frutto, se non per la scienza (nella quale non troviamo l’ombra di un progresso, anzi si rimane lontanissimi dall’altezza raggiunta nel periodo alessandrino), per la diffusione della coltura. Naturalmente, le tempestose vicende che l’Impero carolingio dovette affrontare dalla morte di Carlo Magno alla sua finale catastrofe, nell’887, non erano fatte per incoraggiare gli studii scientifici. Di peggio avvenne col dissolversi dell’Impero, e con le lotte che tosto si accesero in ognuna delle tre grandi sezioni politiche, che ne emersero (Italia, Francia, Germania), fra i pretendenti alla Corona regia e imperiale.
Soltanto, in sullo scorcio del sec. X, al primo consolidarsi della monarchia in Francia per opera della Casa dei Capetingi, e, in Germania, per opera degli Ottoni, si ha una ripresa nel campo della coltura scientifica.
Anche ora, come nei cinque secoli precedenti, benchè non manchino scuole laiche, private o sovvenute dai municipii, la coltura vive specialmente all’ombra dei conventi, e nelle scuole ecclesiastiche (vescovili e monastiche). Non a caso, perciò, il più grande dotto del sec. X è un monaco — Gerberto (940-1003, che sarà poi papa Silvestro II) — matematico, astronomo, fisico ecc. La sua celebre scuola ebbe sede a Rheims; vi si insegnavano tutte le discipline scientifiche del tempo; vi si davano esperimenti di fisica, e a lui si attribuisce la costruzione di organi idraulici. Egli stesso scrisse di matematica (non andò tuttavia oltre il segno a cui era giunto Boezio), e ricercò dovunque libri antichi di scienza, divenuti ormai rarissimi.
Proprio, a motivo della sua scienza e delle sue pratiche scientifiche, la vita di Gerberto fu agitatissima. Il volgo lo riteneva uno stregone; le autorità ecclesiastiche lo colpirono più volte. Ma è innegabile la sua influenza sui suoi contemporanei e sui dotti dei due secoli a lui successivi: i secc. XI e XII. In questo lungo periodo la scuola di Rheims fu la mèta del pellegrinaggio degli amatori della scienza di ogni Paese; i quali, tornati in patria, vi diffondevano il sapere che colà avevano attinto.
Una speciale importanza ebbe il fatto che, nella sua scuola di Rheims, Gerberto aveva insegnato anche le dottrine filosofiche di Aristotele, che però egli non conosceva direttamente, ma attraverso quanto ne tramandavano gli scrittori latini, specie Boezio. L’amore, che egli seppe istillare per Aristotele, fu così grande, che i suoi discepoli furono invogliati a ricercarne direttamente le opere, e le chiesero, più che alla letteratura greca, di cui si era scordata la lingua, alle traduzioni arabe. Dal che dovevano venire profondi rivolgimenti.