Questa non può immaginarsi disgiunta da una, variazione di ms, ma; variazione che assai probabilmente sarà conforme a quella di p, e ne attenuerà quindi gli effetti. Ma mentre l’effetto di una variazione generale nella trasparenza dell’aria è, per ciò che riguarda la radiazione terrestre, costante a tutte le latitudini, per riguardo alla radiazione solare esso va rapidamente crescendo colla latitudine.
Poniamo per esempio che per uno speciale intorbidamento dell’aria tanto il valore di p quanto quello di ms o di ma siano diminuiti di un decimo del loro valore: il rapporto (psecξ)/m all’equatore rimarrà invariato; ma fra 60° e 70° Lat., nel punto dove ξ = 60° e quindi sec ξ = 2, esso è ridotto dal valore primitivo p²/m, al valore
| ( | 9 | p | ) | ² | = | 9 | p² |
| 10 | |||||||
| ( | 9 | m | ) | 10 | m | ||
| 10 |
cioè sarà ridotto anch’esso di un decimo del suo valore primitivo.
Ad ogni diminuzione di questo rapporto deve corrispondere una diminuzione ad essa proporzionale della differenza ts - tc, o ta - tc tra la temperatura della superficie terrestre e la temperatura del cielo. Nel caso considerato, questa differenza sarà mantenuta invariata all’equatore, ma sarà ridotta di 1/10 presso il cerchio polare. Secondo le formole di Forbes le temperature medie dell’aria, e quindi con differenza di qualche grado in più quelle della superficie terrestre, sotto il cerchio polare, in una regione rigorosamente continentale (poniamo Werchojansk in Siberia) è -15° circa; mentre in una regione rigorosamente oceanica sarebbe 0°. Le differenze ts - tc, ta - tc sarebbero quindi, (posto tc = -45°), ora di 30° per le regioni più continentali e di 45° per le oceaniche; il raffreddamento prodotto tra 60° e 70° lat. da un intorbidimento dell’aria, che produca la diminuzione di 1/10 in ambedue i coefficienti di trasparenza, sarebbe quindi almeno di 3° nella regione continentale, di 4°,5 nella oceanica. Dico almeno perchè, raffreddandosi il suolo e l’aria degli strati inferiori su tutta la superficie della terra, dovrà diminuire anche la radiazione e la conduzione e ogni trasporto convettivo di calore verso la massa superiore dell’atmosfera, e quindi diminuire anche la temperatura del cielo tc: infatti anche nelle variazioni annuali questa segue in ogni paese un andamento parallelo all’andamento della temperatura degli strati inferiori. Il raffreddamento effettivo non sarà quindi soltanto del numero di gradi indicato, ma a questo va aggiunto il numero di gradi di cui si deve ritener diminuita la tc e che non possiamo dire quale possa essere.
Ma l’ipotesi che la trasparenza m per le variazioni terrestri varii proporzionalmente colla trasparenza p per le radiazioni solari, non è nemmeno la più probabile. Se la causa dell’intorbidamento atmosferico è, secondo la supposizione più spontanea, il vapore acqueo, probabilmente la variazione di m è proporzionalmente assai minore di quella di p, se pure non dobbiamo ritenere che essa è opposta a quest’ultima. È noto infatti che tra gli strati a immediato contatto col suolo e gli strati a qualche altezza vi è generalmente contrasto tanto nel periodo diurno che nel periodo annuo della umidità assoluta; le ore e la stagione più secche negli alti monti (ora notturne, inverno) sono quelle più umide al basso. Così si svolge una delle funzioni moderatrici del vapore acqueo, il quale si solleva negli strati alti durante le ore e la stagione più calde, temperando colla formazione di nubi la radiazione solare e lasciando più libera la radiazione refrigerante del suolo; si abbassa nelle ore e nella stagione più fredde lasciando più libere fino agli strati inferiori dell’atmosfera le radiazioni del sole e temperando la irradiazione refrigerante del suolo. Non è quindi assurdo supporre che ad una diminuzione di p corrisponda un aumento di m, e quindi una diminuzione ancor maggiore del rapporto
| psecξ | [59]. |
| m |
Noi vediamo adunque la possibilità di spiegare con una leggiera variazione della trasparenza atmosferica un raffreddamento di parecchi gradi tanto nelle regioni assolutamente continentali come in quelle assolutamente oceaniche.
Questo raffreddamento è, fino a 45° Lat. circa, maggiore sui continenti che sui mari; nelle latitudini superiori è maggiore sui mari che sui continenti. Fino a quella latitudine infatti i continenti sono più caldi dei mari, ed è quindi maggiore anche il raffreddamento sui continenti che sui mari; oltre 45° Lat. si verifica l’opposto. Nell’un caso e nell’altro però si attenua il dislivello di temperatura fra continenti ed oceani.
Così è verificata una delle condizioni caratteristiche dei periodi freddo-umidi, secondo la teoria di Brückner.