Przytaczam szereg pomiarów odnoszących się do kwestii powyższej: chlorek (1 dg) był suszony w suszarce w temp. 55°, po czym umieszczony w eksykatorze nad bezwodnikiem fosforowym; począł on wtedy tracić nader powoli na ciężarze, co świadczy, że w chlorku znajdowała się jeszcze woda. Po upływie 12 godzin strata wyniosła 3 mg. Następnie przeniesiono chlorek z powrotem do suszarki i podwyższono temperaturę do 100°. W ciągu tego doświadczenia chlorek utracił 6,3 mg. Pozostawiony w dalszym ciągu w suszarce przez 3 godziny i 15 minut, chlorek stracił jeszcze 2,5 mg. Teraz utrzymywano temperaturę przez 45 minut między 100 a 120°, czego wynikiem była znowu strata ciężaru = 0,1 mg. Podczas dalszego, 80-minutowego ogrzewania w 125°, chlorek nie stracił nic na wadze. Ogrzewany dalej przez 30 minut w 150°, chlorek utracił jeszcze 0,1 mg. Wreszcie ogrzewany w ciągu 4-ch godzin w temp. 200°, chlorek zmniejszył swój ciężar o 0,15 mg. Po upływie wszystkich tych operacji , ciężar tygielka zmienił się o 0,05 mg.

Po każdorazowym oznaczeniu ciężaru atomowego, rad z roztworu był przeprowadzony powrotnie w chlorek w sposób następujący: ciecz, zawierającą po ukończonym oznaczeniu azotan radu i azotan srebra w nadmiarze, zakwaszano kwasem solnym, oddzielano chlorek srebra przez filtrowanie, po czym przesącz parowano z nadmiarem czystego kwasu solnego kilkakrotnie do suchości. W ten sposób można wypędzić kwas azotowy. — Chlorek srebra, tworzący się podczas oznaczania, był zawsze radioaktywny i świecił. Przez oznaczenie zawartego w nim srebra przekonałam się jednak, że nie zawierał on wcale takiej ilości radu, która by się dała zważyć. W celu wykonania tej próby stopiony chlorek srebra, znajdujący się w tyglu, został zredukowany wodorem, wydzielanym przez działanie cynku na kwas solny, po czym tygiel, po przepłukaniu, ważono razem z metalicznym srebrem. W jednym z doświadczeń stwierdziłam, że ciężar regenerowanego chlorku radu był równie wielki, jak i przed operacją. Podobne sprawdzania pozwoliły mi utwierdzić się w mniemaniu, że w doświadczeniach swoich nie popełniłam żadnego znaczniejszego błędu.

Rad jest pierwiastkiem, którego własności każą zaliczyć go do grupy metali ziem alkalicznych. W grupie tej stanowi on wyższy homologon baru.

Ze względu na swój ciężar atomowy rad zajmuje miejsce w układzie periodycznym tuż za barem, w kolumnie metali ziem alkalicznych i w szeregu poziomym, w którym mieszczą się już uran i tor.

Własności soli radowych. Sole radu: chlorek, azotan, węglan, siarczan są podobne, zaraz po ich przygotowaniu w stanie stałym, do soli baru, jednak wszystkie one barwią się z czasem. Wszystkie sole radu świecą w ciemności. We względzie własności chemicznych sole radu są najzupełniej analogiczne z odpowiednimi solami baru. Jednakże chlorek radu jest trudniej rozpuszczalny od chlorku baru. Rozpuszczalność azotanów w wodzie zdaje się być jednakowo wielka.

Sole radu stanowią źródło trwałego i samodzielnego wydzielania się ciepła. Czysty chlorek radu jest paramagnetyczny. Jego stała magnetyczna (coefficient d’aimentation spécifique) K została zmierzona przez pp. P. Curie i C. Chéneveau za pomocą przyrządu obmyślanego przez obu pomienionych fizyków38. Mierzenie tej stałej polegało na porównywaniu ze stałą magnetyczną wody, przy czym do wyników wnoszono poprawkę zależną od magnetyzmu powietrza. W ten sposób oznaczono:

, przyjmując, że dla wody

. Czysty chlorek baru jest diamagnetyczny i jego stała magnetyczna wynosi: