Tylko metoda elektryczna pozwala na ścisłe pomiary; obie pozostałe dają jedynie rezultaty jakościowe. Przy tym wyniki wszystkich trzech metod powyższych zaledwie z gruba mogą być ze sobą porównywane. Czy to będzie klisza fotograficzna, czy gaz ulegający jonizacji, czy ekran fluoryzujący — każdy z nich pochłania jedynie cząstkę, zależną od swego charakteru, energii promieniowania i zamienia ją na inną: chemiczną, jonizacyjną lub świetlną. Promieniowanie nie jest, jak wiemy, jednolite; cząstki promieniowania pochłaniane przez ciała mogą nie tylko ilościowo, lecz i jakościowo różnić się między sobą. Wreszcie, nie jest wiadome, czy pochłonięta energia będzie w całości zamieniona w ukazujący się nam rodzaj energii. Część jej przejść może w ciepło, w promieniowanie wtórne, w energię chemiczną itp.; wszelkie więc pomiary promieniowania za pomocą jakiegokolwiek transformatora zależeć będą od jego natury.
Porównajmy dwie próbki, z których jedna zawiera rad, a druga polon i które jednakowo są aktywne w przyrządzie z kondensatorem (fig. 1). Po zawinięciu ich w cienką blaszkę glinową próbka druga wyda się daleko mniej aktywną od pierwszej. Tak samo po umieszczeniu próbek pod ekranami fluoryzującemi zauważymy nierówne zmniejszanie się fluorescencji, jeżeli próbki oddalać zaczniemy lub je owijać w coraz grubsze blaszki glinowe; fluorescencja wywołana przez preparat polonowy szybciej się zmniejsza niż wywołana przez preparat radowy.
Jakąkolwiek metodą będziemy badali, zawsze znajdziemy, że energia promieniotwórcza nowych tych substancji promieniotwórczych jest znacznie większa niż uranu lub toru. Tak np. w małej odległości działają one prawie natychmiastowo na kliszę fotograficzną, gdy uran lub tor wymagają 24 godzin ekspozycji. Ekran fluoryzujący żywo świeci pod wpływem tych nowych substancji radioaktywnych, gdy żadne nawet ślady świecenia nie występują po zbliżeniu uranu lub toru. Ich działanie jonizujące jest również około miliona razy znaczniejsze od działania uranu lub toru.
Rozkład promieniowania. Badania wielu fizyków (Becquerela, Meyera i Schweidlera, Giesla, Villarda, Rutherforda, P. Curie’go) stwierdziły, że promieniowanie substancji radioaktywnych składa się z trzech grup promieni, które za Rutherfordem odróżnię literami α, β i γ.
1)Promienie α są bardzo słabo przenikliwe i, o ile się zdaje, stanowią najznaczniejszą część promieniowania; wyróżniają się one przez właściwe im prawa, według których są pochłaniane przez ciała. Pole magnetyczne odchyla je bardzo nieznacznie; początkowo uważane były za niezdolne do podobnego odchylenia, a to dlatego, że stosowano zbyt słabe pole magnetyczne. Odchylenie promieni α odbywa się w sposób podobny do odchylenia promieni katodalnych, tylko w kierunku przeciwnym, czyli tak samo, jak odchylenie promieni kanałowych w rurce Crookesa.
2) Promienie β są w ogólności mniej pochłaniane niż poprzednie. Zbaczają one również ze swej drogi prostolinijnej w polu magnetycznym w sposób podobny, jak to czynią promienie katodalne.
3) Promienie γ przenikają z łatwością ciała i nie zbaczają w polu magnetycznym; porównać je można z promieniami Röntgena.
Promienie tej samej grupy mogą mieć zresztą rozmaitą zdolność przenikania i to w granicach bardzo rozległych, jak np. promienie β.
Wyobraźmy sobie doświadczenie następujące: rad R umieszczony jest w wąziutkim zagłębieniu, wydrążonym dość głęboko w bloku ołowianym P (fig. 4). Pęczek promieni prostolinijny i mało rozchylony wybiega z wydrążenia. Przypuśćmy, że w przestrzeni otaczającej naczynie z radem utworzone zostało stałe pole magnetyczne, bardzo silne, prostopadłe do płaszczyzny rysunku i skierowane do tyłu rysunku. Trzy grupy promieni: α, β i γ zostaną w polu magnetycznym rozdzielone. Promienie γ o niezbyt wielkim natężeniu kontynuować będą bieg swój po drodze prostej bez śladu nawet zboczenia. Promienie β odchylone zostaną w sposób podobny jak promienie katodalne i zakreślą w płaszczyźnie rysunku linię kołową, zmienną w dość znacznych granicach dla poszczególnych promieni. Jeżeli blok ołowiany umieszczony jest na kliszy fotograficznej AC, to część BC, na którą padną promienie β, ulegnie zmianie. Wreszcie promienie α o bardzo wielkim natężeniu odchylą się zaledwie z lekka. Opisują one w płaszczyźnie rysunku krzywą, której promień krzywizny jest bardzo wielki; kierunek zboczenia jest wprost przeciwny do kierunku odchylenia promieni β.
Jeżeli blok ołowiany przykryjemy blaszką glinową (o grubości 0,1 mm), promienie α będą zatrzymane w bardzo znacznej części, promienie β — w ilości znacznie mniejszej, gdy promienie γ przejdą prawie bez zatrzymania.