Znacznie większa jednak część promieniowania radu składa się z promieni α, które prawdopodobnie wysyłane są przez warstwę wierzchnią substancji promieniotwórczej. Jeżeli bowiem zmieniać się będzie grubość warstwy promieniującej, to, co prawda, natężenie promieniowania α wzrośnie, lecz nie w tym co grubość stopniu; natomiast promieniowanie β wzrośnie w stosunku do grubości; promienie α, idące z wnętrza masy, pochłaniane są przez górne warstwy preparatu.
Zdolność przenikania promieni. Ciała promieniotwórcze wysyłają promienie, które przenikają zarówno przez powietrze, jak i przez próżnię.
Odległość od źródła radioaktywnego, do jakiej promienie dotrzeć mogą w powietrzu, dochodzi do kilku nawet metrów. W niektórych doświadczeniach podczas pomiarów elektrycznych zauważyliśmy wpływ źródła promieniującego na powietrze kondensatora jeszcze w odległości 2 do 3 m. Na tejże odległości zaobserwowaliśmy również oddziaływanie na ciała fluoryzujące i na kliszę fotograficzną. Podobne doświadczenia wykonywać jednak trzeba z substancjami silnie aktywnymi. Promieniowanie, które dochodzi aż do takiej odległości od radu, zawiera zarówno promienie odchylane β, jak i promienie γ; jednak ilość pierwszych znacznie przeważa.
Tymczasem największa część promieniowania, tj. promienie α, z łatwością zostaje wstrzymana przez powietrze i dochodzi zaledwie do odległości 7 cm od źródła. Promieniowanie polonu zauważyć się daje zaledwie do odległości 4–6 cm.
Jeszcze silniejsza zaznaczy się różnica, jeżeli użyjemy ekranów stałych zamiast powietrza. Niektóre promienie wysyłane przez rad zdolne są przenikać przez warstwę ołowiu lub szkła grubości kilku nawet centymetrów. Są to niesłychanie przenikliwe promienie; praktycznie nie zdołano osiągnąć całkowitego ich pochłonięcia przez jakikolwiek ekran. Przekonaliśmy się, że blacha ołowiana o grubości 1,5 cm przepuszcza dość znaczną ilość promieni β. Natomiast promienie α nie są prawie wcale przepuszczane przez ekrany stałe. Promienie polonu, składające się jedynie z promieni α, bardzo łatwo są pochłaniane i przechodzą co najwyżej przez cieniutkie ekrany.
Jeżeli, jak to uczynił Villard, na szereg klisz fotograficznych puścimy promienie radu, to wiązka promieni niezaginanych i przenikliwych γ przejdzie przez wszystkie klisze, znacząc na każdej z nich swą obecność, gdy promienie β tylko na pierwszej kliszy swój ślad zostawią. W powyższym doświadczeniu promienie β dlatego nie oddziałały na drugą kliszę, że zostały podczas przejścia przez pierwszą rozproszone na wszystkie strony.
Promienie katodalne rozpraszane są z łatwością przez ekrany; rozpraszanie jest tym słabsze, im grubość ekranu jest mniejsza; podczas przejścia przez ekrany bardzo cienkie kierunek pęczka wychodzącego staje się już przedłużeniem pęczka wpadającego.
Promienie β radu zachowują się w sposób analogiczny, choć ulegają rozproszeniu nieco trudniej niż katodalne; te ostatnie zostają rozproszone już przez ekrany glinowe o grubości zaledwie 0,01 mm; tymczasem te promienie β radu, których szybkość jest najmniejsza, są dość silnie rozpraszane przez ekran glinowy o grubości dopiero 0,1 mm, podczas gdy część promieni β bardzo przenikliwych i słabo zaginanych (promienie o wielkiej szybkości) przechodzi przez ten ostatni ekran bez żadnej zmiany; promienie takie mogą przenikać przez warstwę parafiny grubą na kilka centymetrów, nie ulegając wcale rozproszeniu. Powietrze również działa na promienie β radu rozpraszająco: działanie daje się odczuwać zwłaszcza na promieniach β silnie odchylanych; w ogóle jednak powietrze daleko słabiej rozprasza promienie β niż ciała stałe, i dlatego promienie β mogą przenikać przez powietrze na kilka nawet metrów.
Działanie jonizujące promieni radu na ciecze. Pan Curie52 przekonał się, że promienie radu oraz promienie Röntgena, przechodzące przez ciecze dielektryczne, udzielają im, podobnie jak to czynią z powietrzem, własność przewodzenia prądu elektrycznego, lubo53 w bardzo słabym stopniu; oto doświadczenie (fig. 7). Ciecz badaną wlewamy do naczynia metalowego CDEF, a następnie zanurzamy w cieczy cylinderek miedziany AB. Oba te naczynia służą jednocześnie jako elektrody.
Pierwsze z nich CDEF ładujemy do pewnego potencjału za pomocą baterii akumulatorów, od których drugi biegun złączony jest z ziemią. Cylinder AB jest połączony z elektrometrem. Jeżeli prąd przechodzi przez ciecz, elektrometr utrzymujemy na zerze za pomocą kwarcu piezoelektrycznego. Cylinder AB jest otoczony innym MNM’N’, połączonym z ziemią, i nie pozwalającym na przechodzenie prądu elektrycznego przez powietrze. Rurkę z solą barową radonośną opuszczamy na dno cylindra AB. Promienie radu działają na płyn poprzez szkło rurki i poprzez ściankę metalową. Można również rurkę z radem umieścić pod ścianką DE.