W doświadczeniach tych energia radioaktywna zawarta w gazie powoduje promieniotwórczość ścianek. Jeżeli usunie się gaz z wnętrza rury, czyniąc w niej próżnię, zauważy się od tej chwili daleko szybszy zanik aktywności ścianek, które wtedy zmieniają swą promieniotwórczość według prawa poprzednio przytoczonego, tj. o połowę co każde 28 minut. Ten sam rezultat ma miejsce, skoro się gaz czynny wewnątrz rurki zastąpi przez świeży gaz obojętny. Prawo zmniejszania się o połowę co każde 4 dni jest zatem charakterystycznym dla energii radioaktywnej zawartej w gazie aktywowanym przez rad. Przyjmując sposób wyrażania się Rutherforda, powiedzieć można, że co każde 4 dni znika połowa emanacji.

Emanacja toru jest nieco innej natury i zanika daleko szybciej, zmniejszając się do połowy co minutę i 10 sekund. Emanacja aktynu niszczeje jeszcze prędzej, gdyż obniżenie do połowy następuje już w ciągu kilku sekund.

Powietrze atmosferyczne, według badań Elstera i Geitla, zawiera w małej ilości emanację radioaktywną, podobną do tych, które pochodzą od ciał promieniotwórczych. Emanacja ta zdaje się być identyczną z emanacją radu.

Gazy wydzielające się z niektórych wód mineralnych zawierają trochę emanacji, podczas gdy powietrze zawarte w wodach morskich i rzecznych nie zdaje się jej zawierać.

Natura emanacji. Według Rutherforda76 emanacja ciała radioaktywnego jest to gaz radioaktywny, który wydziela się z tego ciała. Pod wielu względami emanacja istotnie zachowuje się jak gaz materialny. Tak np., jeżeli połączymy naczynie zawierające emanację z naczyniem, które jej nie zawierało, to emanacja dyfunduje z pierwszego naczynia do drugiego i podział emanacji między naczyniami odbywa się jak dla zwykłego gazu, który idzie za prawem Mariotta i Gay Lussaca, jeżeli przyjmiemy, że promieniowanie każdego naczynia jest proporcjonalne do ilości zawartej w nim emanacji.

Emanacja dyfunduje wzdłuż rurki długiej i cienkiej według praw dyfuzji gazu zwykłego; współczynnik dyfuzji emanacji w powietrzu jest niezbyt różny od współczynnika dla dwutlenku węgla.

Rutherford i Soddy dowiedli, że emanacje radu i toru kondensują się w temperaturze powietrza płynnego jak gazy skraplające się. Weźmy dwa naczynia (rys. 12) B i C komunikujące ze sobą za pomocą kranu R’ i z roztworem radu za pomocą kranu R. Oba te naczynia zawierają emanację. Zamknijmy kran R i otoczmy naczynie C powietrzem skroplonym. Po pewnym czasie cała ilość emanacji będzie skondensowana w naczyniu C i jeżeli wówczas przetniemy komunikację R’, a potem wyjmiemy przyrząd z powietrza ciekłego, to zobaczymy, że naczynie B nie zawiera emanacji, a naczynie C zawiera jej więcej niż poprzednio. Doświadczenie to jest bardzo piękne, jeżeli naczynia szklane B i C są wewnątrz pokryte warstwą siarczku cynkowego fosforyzującego, który przepysznie świeci pod wpływem emanacji.

Jednakże emanacja radu różni się od zwykłego gazu w tym, że niknie sama przez się w zalutowanym naczyniu szklanym. Dotąd nie stwierdzono jeszcze ani ciśnienia emanacji, ani charakteryzującego ją widma. Przenika ona także z wielką łatwością przez szparki, przez które zwykłe gazy dyfundują bardzo powoli. Wreszcie nie zauważono dotąd, aby temperatura kondensacji zależała od ilości emanacji zawartej w naczyniu danej objętości, jak to ma miejsce dla gazów.

Ramsay i Soddy znaleźli, że gazy wydzielane przez rad zawierają hel i że ten gaz tworzy się stopniowo wobec emanacji radu77. Odkrycie to nasuwa wniosek, że emanacja jest gazem nietrwałym i że hel jest jednym z produktów jej dezagregacji.

Emanacje radu i toru nie ulegają wpływowi różnych energicznych odczynników chemicznych. Rutherford i Soddy porównywają je z tej przyczyny do gazów z grupy argonu.