„В результате упорной работы над разработкой и проверкой этих примитивных, по существу, принципов профессор установил ясную и точную систему.

„Вот приблизительно ее сущность:

„На каждый ход всегда имеется только один ответ. Никаких других ответов быть не может, так как одинаковая значимость их — всегда только кажущаяся, и все они, кроме одного, в результате всегда ошибочны.

Человеческий мозг не в силах с математической точностью за десять — двадцать — тридцать и более ходов рассчитать правильность своего ответа, поэтому ошибки всегда неизбежны. Делающий наименьшее число их обычно выигрывает.

„Правильные ходы в игре встречаются очень часто, так как современные изыскания шахматных теоретиков путем ряда проверок установили для многих положений безошибочные ходы. Но, принимая во внимание огромное число шахматных комбинаций (первый ход дает их уже четыреста, а для вычисления числа комбинаций, получаемых со второго хода, потребуется применение высшей математики), ясно, что число правильных, безошибочных ходов, даже самых первоклассных маэстро всегда ограниченно.

„Поэтому, при абсолютно правильной игре белых, делающие так или иначе какие-то ошибки черные всегда проигрывают. При абсолютно верной игре черных все-таки выигрывают белые, если они делают первый ход. Вот почему автомат всегда играл только белыми.

„Но как можно было установить этот, для любого случая и любой комбинации, нужный ход? Применяя цифровые обозначения фигур и клеток на имеющемся у него документе, профессору удалось составить определенную формулу, при которой всегда при любом положении можно было найти этот безошибочный ход.

„При составлении формулы М. И. Ястребов руководился следующими факторами:

1. X — нужный ход.

2. Цифра фигуры, обозначаемая a, a 1, a 2, a 3, и т. д. до 16.