Августин. Итак, справедливость сохраняется только в том случае, если в вещах, в которых она сохраняется, существует некоторое, так сказать, неравенство и несходство.

Еводий. Понимаю.

Августин. Следовательно, если мы признаем, что эти фигуры, о которых говорим, несходны между собою: одна состоит из трех, а другая -- из четырех углов, хотя обе образуются из равных линий, -- не находишь ли ты, что Удержана своего рода справедливость тем, что первая, которая не может иметь равенства противолежащих частей, сохраняет неизменно равенство углов, а в последней, в которой существует такая соразмерность противолежащих сторон, этот закон углов допускает некоторое неравенство? Пораженный этим, я и нашел нужным спросить тебя, насколько тебя привлекла к себе эта истина, эта равномерность, это равенство?

Еводий. Теперь я понимаю, о чем ты говоришь, и немало тому удивляюсь.

Августин. А теперь, так как ты справедливо предпочитаешь равенство неравенству, и так как, полагаю, та кого же мнения придерживается всякий, кто только одарен человеческим смыслом, то поищем, если угодно, такую фигуру, в которой могло бы оказаться высшее равенство. Оказавшаяся такою без всякого сомнения будет предпочтена остальным.

Еводий. Конечно, угодно, и что это за фигура я очень желаю знать.

ГЛАВА Х

Августин. Но прежде ответь мне: не кажется ли тебе, что из тех фигур, о которых мы уже достаточно говорили, превосходнее та, которая состоит из четырех равных линий и из стольких же равных углов, потому что в ней, как видишь, есть и равенство линий, и равенство углов, и существует равенство противолежащих частей, поскольку линия лежит против линии и угол против угла, чего в той фигуре, которая очерчивается тремя равными линиями, мы не находили.

Еводий. Все так, как ты говоришь.

Августин. Имеет ли она высшее равенство, или тебе кажется иначе? Ибо если она имеет его, то мы напрасно задумали искать другую, а если не имеет, то я желал бы, чтобы ты доказал мне это.