Еводий. Их то же число, и это те, которые идут к середине сторон.
Августин. Ты говоришь, по-моему, совершенно верно, и на этом далее останавливаться нет нужды. Для нашей цели достаточно и этого, поскольку ты видишь, что хотя здесь и сохраняется великое равенство, но еще не во всех отношениях совершенное.
Еводий. Вижу несомненно, и сильно желаю знать, что это за фигура, которая имеет высшее равенство.
ГЛАВА XI
Августин. Да какая же, как не та, окраина которой отовсюду однообразна, без помехи равенству со стороны какого-либо угла, и от середины которой ко всем частям окраины могут быть проведены равные линии?
Еводий. Думаю, что я уже понимаю. Мне кажется, что ты имеешь в виду фигуру, окаймленную круговой линией.
Августин. Ты понял верно. Теперь обрати внимание на следующее. Из предшествующего рассуждения мы узнали, что под линией понимается одна долгота и ей не придается никакой широты; потому-то она не может быть делима вдоль своей длины. Полагаешь ли ты, что можно представить какую-либо фигуру без широты?
Еводий. Решительно нет.
Августин. Ну, а сама широта может ли не иметь долготы, может ли существовать одна широта подобно тому, как мы выше говорили о долготе без широты, или не может?
Еводий. По моему мнению, не может.